Natural Inorganic Ingredients in Wound Healing

Page: [621 - 641] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Background: One of the major clinical challenges is to achieve a rapid and efficient treatment of complex chronic wounds. Nowadays, most wound dressings currently available are unable to find a solution to the challenges of resistance to bacterial infection, protein adsorption and increased levels of exudates. Natural inorganic ingredients (clay minerals, metal cations, zeolites, etc.) could be the key to solve the problem satisfactorily. Some of these materials have shown biocompatibility and ability to enhance cell adhesion, proliferation and cellular differentiation and uptake. Besides, some natural inorganic ingredients effectively retain drugs, allowing the design of drug delivery matrices.

Objective: Possibilities of natural inorganic ingredients in wound healing treatments have been reviewed, the following sections have been included:

1. Introduction

2. Functions of Inorganic Ingredients in wound healing

2.1. Antimicrobial effects

2.2. Hemostatic effects

3. Clay minerals for wound healing

3.1. Clay minerals

3.2. Clay mineral semisolid formulations

3.3. Clay/polymer composites and nanocomposites

3.4. Clay minerals in wound dressings

4. Other inorganic materials for wound healing

4.1. Zeolites

4.2. Silica and other silicates

4.3. Other minerals

4.4. Transition metals

5. Conclusion

Conclusion: Inorganic ingredients possess useful features for the development of chronic wounds advanced treatments. They improve physical (mechanical resistance and water vapor transmission), chemical (release of drugs, hemostasis and/or adsorption of exudates and moisture) and biological (antimicrobial effects and improvement of healing) properties of wound dressings. In summary, inorganic ingredients have proved to be a promising and easily accessible products in the treatment of wounds and, more importantly, chronic wounds.

Keywords: Skin, wound healing, antimicrobial, inorganic excipients, clay minerals, zeolites, transition metals.

[1]
Ng KW, Lau WM. Skin deep: the basis of human skin structure and drug penetrationPercutaneous penetration enhancers chemical methods in penetration enhancement. Berlin, Heidelberg: Springer 2015; pp. 3-11.
[2]
Burns JL, Mancoll JS, Phillips LG. Impairments to wound healing. Clin Plast Surg 2003; 30(1): 47-56.
[http://dx.doi.org/10.1016/S0094-1298(02)00074-3] [PMID: 12636215]
[3]
Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol 2007; 127(3): 514-25.
[http://dx.doi.org/10.1038/sj.jid.5700701] [PMID: 17299434]
[4]
Demidova-Rice TN, Hamblin MR, Herman IM. Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 1: normal and chronic wounds: biology, causes, and approaches to care. Adv Skin Wound Care 2012; 25(7): 304-14.
[http://dx.doi.org/10.1097/01.ASW.0000416006.55218.d0] [PMID: 22713781]
[5]
Hunt TK, Van Winkle Jr W Jr. Normal repair Fundamentals of wound management. New York: Appleton-Century-Crofts 1997.
[6]
Tenci M, Rossi S, Aguzzi C, et al. Carvacrol/clay hybrids loaded into in situ gelling films. Int J Pharm 2017; 531(2): 676-88.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.024] [PMID: 28619454]
[7]
Nussbaum SR, Carter MJ, Fife CE, et al. An economic evaluation of the impact, cost and Medicare policy implications of chronic nonhealing wounds. Value Health 2018; 21(1): 27-32.
[http://dx.doi.org/10.1016/j.jval.2017.07.007] [PMID: 29304937]
[8]
Olsson M, Järbrink K, Divakar U, et al. The humanistic and economic burden of chronic wounds: a systematic review Wound Repair Regen 2019; 27(1): 114-25.
[http://dx.doi.org/10.1111/wrr.12683] [PMID: 30362646]
[9]
Sen CK, Gordillo GM, Roy S, et al. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 2009; 17(6): 763-71.
[http://dx.doi.org/10.1111/j.1524-475X.2009.00543.x] [PMID: 19903300]
[10]
Biggs RD. Medicine, surgery, and public health in ancient Mesopotamia. J Assyr Acad Stud 2005; 19: 1-19.
[11]
De Vos P. European materia medica in historical texts: longevity of a tradition and implications for future use. J Ethnopharmacol 2010; 132(1): 28-47.
[http://dx.doi.org/10.1016/j.jep.2010.05.035] [PMID: 20561577]
[12]
Sánchez-Espejo R, García-Villén F, Aguzzi C, Cerezo P, Viseras C. Medicinal use of clays from antiquity to the twenty-first century XVI International Clay Conference 2017. Jul; 17-21. Granada, Spain. Scientific Research Abstracts. ISSN 2464-9147.
[13]
Gomes CSF, Silva JBP. Minerals and clay minerals in medical geology. Appl Clay Sci 2007; 36: 4-21.
[http://dx.doi.org/10.1016/j.clay.2006.08.006]
[14]
Demling R, DeSanti L. The role of silver technology in wound healing: part 1: effects of silver on wound management. Wounds 2001; 13(Suppl. A): 4-15.
[15]
Dunn K, Edwards-Jones V. The role of Acticoat with nanocrystalline silver in the management of burns. Burns 2004; 30(Suppl. 1): S1-9.
[http://dx.doi.org/10.1016/S0305-4179(04)90000-9] [PMID: 15327800]
[16]
Fong J. The use of silver products in the management of burn wounds: change in practice for the burn unit at Royal Perth Hospital. Primary Intention 2005; 13: S16-22.
[17]
Viseras C, Carazo E, Borrego-Sánchez A, et al. Clay minerals in skin drug delivery. Clays Clay Miner 2019; 67: 59-71.
[http://dx.doi.org/10.1007/s42860-018-0003-7]
[18]
Sánchez-Espejo R, Aguzzi C, Salcedo I, Cerezo P, Viseras C. Clays in complementary and alternative medicine. Mater Technol 2014; 29: B78-81.
[http://dx.doi.org/10.1179/1753555714Y.0000000173]
[19]
Fakhrullina GI, Akhatova FS, Lvov YM, Fakhrullin RF. Toxicity of halloysite clay nanotubes in vivo: a Caenorhabditis elegans stud. Environ Sci Nano 2015; 2: 54-9.
[http://dx.doi.org/10.1039/C4EN00135D]
[20]
Viseras C, Aguzzi C, Cerezo P. Medical and health applications of natural mineral nanotubes Natural Mineral nanotubes: properties and applications oakville. Apple Academic Press, Inc. 2015; pp. 437-48.
[http://dx.doi.org/10.1201/b18107-33]
[21]
Aguzzi C, Sandri G, Cerezo P, Carazo E, Viseras C. Health and medical applications of tubular clay minerals Dev clay Sci. Amsterdam: Elsevier 2016; Vol. 7: pp. 708-25.
[22]
Jafarbeglou M, Abdouss M, Shoushtari AM, Jafarbeglou M. Clay nanocomposites as engineered drug delivery systems. RSC Advances 2016; 6: 50002-16.
[http://dx.doi.org/10.1039/C6RA03942A]
[23]
Sandri G, Bonferoni MC, Rossi S, et al. Clay minerals for tissue regeneration, repair, and engineering.Elsevier. Ågren. Ms 2016; •••: 385-402.
[http://dx.doi.org/10.1016/B978-1-78242-456-7.00019-2]
[24]
Yang JH, Lee JH, Ryu HJ, Elzatahry AA, Alothman ZA, Choy JH. Drug-clay nanohybrids as sustained delivery systems. Appl Clay Sci 2016; 130: 20-32.
[http://dx.doi.org/10.1016/j.clay.2016.01.021]
[25]
Carazo E, Borrego-Sánchez A, García-Villén F, et al. Advanced inorganic nanosystems for skin drug delivery. Chem Rec 2018; 18(7-8): 891-9.
[http://dx.doi.org/10.1002/tcr.201700061] [PMID: 29314634]
[26]
García-Villén F, Carazo E, Borrego-Sánchez A, et al. Clay minerals in drug delivery systems Modified Clay and Zeolite Nanocomposite Materials. Amsterdam, Oxford, Cambridge: Elsevier Inc. 2019; pp. 129-66.
[http://dx.doi.org/10.1016/B978-0-12-814617-0.00010-4]
[27]
López-Galindo A, Viseras C, Aguzzi C, Cerezo P. Pharmaceutical and cosmetic uses of fibrous clays Development in Clay Science. Elsevier 2011; Vol. 3: pp. 299-324.
[http://dx.doi.org/10.1016/B978-0-444-53607-5.00013-X]
[28]
García-Villén F, Faccendini A, Aguzzi C, et al. Montmorillonite-norfloxacin nanocomposite intended for healing of infected wounds. Int J Nanomedicine 2019; 14: 5051-60. b
[http://dx.doi.org/10.2147/IJN.S208713] [PMID: 31371946]
[29]
Pharmacopoeia US. United States pharmacopoeia and national formulary (USP 41-NF 36). Rockville, MD: United States pharmacopoeial convention In: 2018.
[30]
British Pharmacopoeia Commission In: British Pharmacopoeia. London: TSO 2018.
[31]
Ministerio de Sanidad y Consumo. Agencia Española de Medicamentosy Productos Sanitarios (Eds). Real Farmacopea Española 2015.
[32]
Jonkman JEN, Cathcart JA, Xu F, et al. An introduction to the wound healing assay using live-cell microscopy. Cell Adhes Migr 2014; 8(5): 440-51.
[http://dx.doi.org/10.4161/cam.36224] [PMID: 25482647]
[33]
Bindschadler M, McGrath JL. Sheet migration by wounded monolayers as an emergent property of single-cell dynamics. J Cell Sci 2007; 120(Pt 5): 876-84.
[http://dx.doi.org/10.1242/jcs.03395] [PMID: 17298977]
[34]
Liang C-C, Park AY, Guan J-L. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2007; 2(2): 329-33.
[http://dx.doi.org/10.1038/nprot.2007.30] [PMID: 17406593]
[35]
Kar S, Bagchi B, Kundu B, et al. Synthesis and characterization of Cu/Ag nanoparticle loaded mullite nanocomposite system: a potential candidate for antimicrobial and therapeutic applications. Biochim Biophys Acta 2014; 1840(11): 3264-76.
[http://dx.doi.org/10.1016/j.bbagen.2014.05.012] [PMID: 25088798]
[36]
Abduljauwad SN, Ahmed HU. Enhancing cancer cell adhesion with clay nanoparticles for countering metastasis. Sci Rep 2019; 9(1): 5935.
[http://dx.doi.org/10.1038/s41598-019-42498-y] [PMID: 30976058]
[37]
Sandri G, Bonferoni MC, Ferrari F, et al. Montmorillonite-chitosan-silver sulfadiazine nanocomposites for topical treatment of chronic skin lesions: in vitro biocompatibility, antibacterial efficacy and gap closure cell motility properties. Carbohydr Polym 2014; 102: 970-7.
[http://dx.doi.org/10.1016/j.carbpol.2013.10.029] [PMID: 24507371]
[38]
Sandri G, Aguzzi C, Rossi S, et al. Halloysite and chitosan oligosaccharide nanocomposite for wound healing. Acta Biomater 2017; 57: 216-24.
[http://dx.doi.org/10.1016/j.actbio.2017.05.032] [PMID: 28522411]
[39]
Saporito F, Sandri G, Bonferoni MC, et al. Essential oil-loaded lipid nanoparticles for wound healing. Int J Nanomedicine 2017; 13: 175-86.
[http://dx.doi.org/10.2147/IJN.S152529] [PMID: 29343956]
[40]
Ganguli-Indra G. Protocol for Cutaneous wound healing assay in a murine model. New York, NY: Humana Press 2014; pp. 151-9.
[http://dx.doi.org/10.1007/978-1-4939-1435-7_12]
[41]
Lizarbe MA, Olmo N, Gavilanes JG. Outgrowth of fibroblasts on sepiolite-collagen complex. Biomaterials 1987; 8(1): 35-7.
[http://dx.doi.org/10.1016/0142-9612(87)90025-1] [PMID: 2950936]
[42]
Olmo N, Lizarbe MA, Gavilanes JG. Biocompatibility and degradability of sepiolite-collagen complex Biomaterials 1987; 8(1): 67-9.
[http://dx.doi.org/10.1016/0142-9612(87)90033-0] [PMID: 3030456]
[43]
Kommireddy DS, Ichinose I, Lvov YM, Mills DK. Nanoparticle multilayers: surface modification for cell attachment and growth. J Biomed Nanotechnol 2005; 1: 286-90.
[http://dx.doi.org/10.1166/jbn.2005.046]
[44]
Mousa M, Evans ND, Oreffo ROC, Dawson JI. Clay nanoparticles for regenerative medicine and biomaterial design: a review of clay bioactivity. Biomaterials 2018; 159: 204-14.
[http://dx.doi.org/10.1016/j.biomaterials.2017.12.024] [PMID: 29331807]
[45]
Meier L, Stange R, Michalsen A, Uehleke B. Clay jojoba oil facial mask for lesioned skin and mild acne-results of a prospective, observational pilot study. Forsch Komplement Med 2012; 19(2): 75-9.
[http://dx.doi.org/10.1159/000338076] [PMID: 22585103]
[46]
Adusumilli S, Haydel SE. In vitro antibacterial activity and in vivo efficacy of hydrated clays on Mycobacterium ulcerans growth. BMC Complement Altern Med 2016; 16(40): 40.
[http://dx.doi.org/10.1186/s12906-016-1020-5] [PMID: 26833071]
[47]
Morrison KD, Underwood JC, Metge DW, Eberl DD, Williams LB. Mineralogical variables that control the antibacterial effectiveness of a natural clay deposit. Environ Geochem Health 2014; 36(4): 613-31.
[http://dx.doi.org/10.1007/s10653-013-9585-0] [PMID: 24258612]
[48]
Morrison KD, Misra R, Williams LB. Unearthing the antibacterial mechanism of medicinal clay: a geochemical approach to combating antibiotic resistance. Sci Rep 2016; 6: 19043.
[http://dx.doi.org/10.1038/srep19043] [PMID: 26743034]
[49]
Williams LB. Geomimicry: harnessing the antibacterial action of clays. Clay Miner 2017; 52(1): 1-24.
[http://dx.doi.org/10.1180/claymin.2017.052.1.01]
[50]
Carretero MI. Clay minerals and their beneficial effects upon human health. A review. Appl Clay Sci 2002; 21: 155-63.
[http://dx.doi.org/10.1016/S0169-1317(01)00085-0]
[51]
Ferrell RE. Medicinal clay and spiritual healing. Clays Clay Miner 2008; 56: 751-60.
[http://dx.doi.org/10.1346/CCMN.2008.0560613]
[52]
Petkewich R. Healing clays. Chem Eng News 2008; 86(17): 48-9.
[http://dx.doi.org/10.1021/cen-v086n017.p048]
[53]
Friedlander LR, Puri N, Schoonen MA, Wali Karzai A. The effect of pyrite on Escherichia coli in water: proof-of-concept for the elimination of waterborne bacteria by reactive minerals. J Water Health 2015; 13(1): 42-53.
[http://dx.doi.org/10.2166/wh.2014.013] [PMID: 25719464]
[54]
Williams LB, Haydel SE, Giese RF, Eberl DD. Chemical and mineralogical characteristics of French green clays used for healing. Clays Clay Miner 2008; 56(4): 437-52.
[http://dx.doi.org/10.1346/CCMN.2008.0560405] [PMID: 19079803]
[55]
Williams LB, Metge DW, Eberl DD, et al. What makes a natural clay antibacterial? Environ Sci Technol 2011; 45(8): 3768-73.
[http://dx.doi.org/10.1021/es1040688] [PMID: 21413758]
[56]
Otto CC, Koehl JL, Solanky D, Haydel SE. Metal ions, not metal-catalyzed oxidative stress, cause clay leachate antibacterial activity. PLoS One 2014; 9(12)e115172
[http://dx.doi.org/10.1371/journal.pone.0115172] [PMID: 25502790]
[57]
Otto CC, Haydel SE. Microbicidal clays: composition, activity, mechanism of action, and therapeutic applications Microbial pathogens and strategies for combating them: science, technology and education. Badajoz: Formatex Research Center 2013; pp. 1169-80.
[58]
Falkinham JO III, Wall TE, Tanner JR, et al. Proliferation of antibiotic-producing bacteria and concomitant antibiotic production as the basis for the antibiotic activity of Jordan’s red soils. Appl Environ Microbiol 2009; 75(9): 2735-41.
[http://dx.doi.org/10.1128/AEM.00104-09] [PMID: 19286796]
[59]
Otto CC, Kilbourne J, Haydel SE. Natural and ion-exchanged illite clays reduce bacterial burden and inflammation in cutaneous meticillin-resistant Staphylococcus aureus infections in mice. J Med Microbiol 2016; 65(1): 19-27.
[http://dx.doi.org/10.1099/jmm.0.000195] [PMID: 26508716]
[60]
Caflisch KM, Schmidt-Malan SM, Mandrekar JN, et al. Antibacterial activity of reduced iron clay against pathogenic bacteria associated with wound infections. Int J Antimicrob Agents 2018; 52(5): 692-6.
[http://dx.doi.org/10.1016/j.ijantimicag.2018.07.018] [PMID: 30075292]
[61]
Cunningham TM, Koehl JL, Summers JS, Haydel SE. pH-Dependent metal ion toxicity influences the antibacterial activity of two natural mineral mixtures. PLoS One 2010; 5(3)e9456
[http://dx.doi.org/10.1371/journal.pone.0009456] [PMID: 20209160]
[62]
Haydel SE, Remenih CM, Williams LB. Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens. J Antimicrob Chemother 2008; 61(2): 353-61.
[http://dx.doi.org/10.1093/jac/dkm468] [PMID: 18070832]
[63]
Vogler EA, Siedlecki CA. Contact activation of blood-plasma coagulation. Biomaterials 2009; 30(10): 1857-69.
[http://dx.doi.org/10.1016/j.biomaterials.2008.12.041] [PMID: 19168215]
[64]
Smith SA, Travers RJ, Morrissey JH. How it all starts: initiation of the clotting cascade. Crit Rev Biochem Mol Biol 2015; 50(4): 326-36.
[http://dx.doi.org/10.3109/10409238.2015.1050550] [PMID: 26018600]
[65]
Baker S, Sawvel A, Stucky GD. inventor; University of California, assignee. Hemostatic compositions and methods of use. United States Patent US8703634B2 2008.
[66]
Pourshahrestani S, Zeimaran E, Djordjevic I, Kadri NA, Towler MR. Inorganic hemostats: the state-of-the-art and recent advances. Mater Sci Eng C 2016; 58: 1255-68.
[http://dx.doi.org/10.1016/j.msec.2015.09.008] [PMID: 26478429]
[67]
British Pharmacopoeia Commission. In: The clay minerals society glossary of clay science. The Clay Minerals Society 2018. Chantilly:VA. 2018.
[68]
López-Galindo A, Viseras C. Pharmaceutical and Cosmetic Applications of Clays. Clay Surfaces Fundam Appl Elsevier 2004; Vol 1: 267-89.
[http://dx.doi.org/10.1016/S1573-4285(04)80044-9]
[69]
da Silva MLG, Campos FA, Rocha TA, et al. The effect of natural and organophilic palygorskite on skin wound healing in rats. Braz J Pharm 2013; 49(4): 729-36.
[http://dx.doi.org/10.1590/S1984-82502013000400012]
[70]
da Silva MLG, Fortes AC, Oliveira MER, et al. Palygorskite organophilic for dermopharmaceutical application. J Therm Anal Calorim 2014; 115: 2287-94.
[http://dx.doi.org/10.1007/s10973-012-2891-4]
[71]
Sasaki Y, Sathi GA, Yamamoto O. Wound healing effect of bioactive ion released from Mg-smectite. Mater Sci Eng C 2017; 77: 52-7.
[http://dx.doi.org/10.1016/j.msec.2017.03.236] [PMID: 28532061]
[72]
Cervini-Silva J, Nieto-Camacho A, Ramírez-Apan MT, et al. Anti-inflammatory, anti-bacterial, and cytotoxic activity of fibrous clays. Colloids Surf B Biointerfaces 2015; 129: 1-6.
[http://dx.doi.org/10.1016/j.colsurfb.2015.03.019] [PMID: 25819359]
[73]
Cervini-Silva J, Nieto-Camacho A, Gómez-Vidales V. Oxidative stress inhibition and oxidant activity by fibrous clays. Colloids Surf B Biointerfaces 2015; 133: 32-5. b
[http://dx.doi.org/10.1016/j.colsurfb.2015.05.042] [PMID: 26071933]
[74]
Khiari I, Sánchez-Espejo R, García-Villén F, et al. Rheology and cation release of Tunisian medina mud-packs intended for topical applications. Appl Clay Sci 2019; 171: 110-7.
[http://dx.doi.org/10.1016/j.clay.2019.01.018]
[75]
Mefteh S, Khiari I, Sánchez-Espejo R, et al. Characterisation of Tunisian layered clay materials to be used in semisolid health care products. Mater Technol 2014; 29: B88-95.
[http://dx.doi.org/10.1179/1753555714Y.0000000152]
[76]
García-Villén F, Sánchez-Espejo R, Carazo E, et al. Characterisation of Andalusian peats for skin health care formulations. Appl Clay Sci 2018; 160: 201-5.
[http://dx.doi.org/10.1016/j.clay.2017.12.017]
[77]
Rebelo M, Viseras C, López-Galindo A, Rocha F, da Silva EF. Rheological and thermal characterization of peloids made of selected Portuguese geological materials. Appl Clay Sci 2011; 52: 219-27. a
[http://dx.doi.org/10.1016/j.clay.2011.02.018]
[78]
Rebelo M, Viseras C, López-Galindo A, Rocha F, da Silva EF. Characterization of Portuguese geological materials to be used in medical hydrology. Appl Clay Sci 2011; 51: 258-66. b
[http://dx.doi.org/10.1016/j.clay.2010.11.029]
[79]
Sánchez-Espejo R, Aguzzi C, Cerezo P, Salcedo I, López-Galindo A, Viseras C. Folk pharmaceutical formulations in western Mediterranean: identification and safety of clays used in pelotherapy. J Ethnopharmacol 2014b; 155(1): 810-4.
[http://dx.doi.org/10.1016/j.jep.2014.06.031] [PMID: 24960182]
[80]
Fraioli A, Serio A, Mennuni G, et al. A study on the efficacy of treatment with mud packs and baths with Sillene mineral water (Chianciano Spa Italy) in patients suffering from knee osteoarthritis. Rheumatol Int 2011; 31(10): 1333-40.
[http://dx.doi.org/10.1007/s00296-010-1475-5] [PMID: 20390281]
[81]
Güngen G, Ardic F, Fındıkoğlu G, Rota S. The effect of mud pack therapy on serum YKL-40 and hsCRP levels in patients with knee osteoarthritis. Rheumatol Int 2012; 32(5): 1235-44.
[http://dx.doi.org/10.1007/s00296-010-1727-4] [PMID: 21258804]
[82]
Ciprian L, Lo Nigro A, Rizzo M, et al. The effects of combined spa therapy and rehabilitation on patients with ankylosing spondylitis being treated with TNF inhibitors. Rheumatol Int 2013; 33(1): 241-5.
[http://dx.doi.org/10.1007/s00296-011-2147-9] [PMID: 21947374]
[83]
Tenti S, Cheleschi S, Galeazzi M, Fioravanti A. Spa therapy: can be a valid option for treating knee osteoarthritis? Int J Biometeorol 2015; 59(8): 1133-43.
[http://dx.doi.org/10.1007/s00484-014-0913-6] [PMID: 25339582]
[84]
Huang A, Seité S, Adar T. The use of balneotherapy in dermatology. Clin Dermatol 2018; 36(3): 363-8.
[http://dx.doi.org/10.1016/j.clindermatol.2018.03.010] [PMID: 29908578]
[85]
Davinelli S, Bassetto F, Vitale M, Scapagnini G. Thermal waters and the hormetic effects of hydrogen sulfide on inflammatory arthritis and wound healing The Science of Hormesis in Health and Longevity. Elsevier 2019; pp. 121-6.
[86]
Benedetti F, Davinelli S, Krishnan S, et al. Antioxidant strategies to tolerate antibiotics. J Transl Med 2014; 334(6068): 915-6.
[87]
Wallace JL, Wang R. Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter. Nat Rev Drug Discov 2015; 14(5): 329-45.
[http://dx.doi.org/10.1038/nrd4433] [PMID: 25849904]
[88]
Abu-al-Basal MA. Histological evaluation of the healing properties of Dead Sea black mud on full-thickness excision cutaneous wounds in BALB/c mice. Pak J Biol Sci 2012; 15(7): 306-15.
[http://dx.doi.org/10.3923/pjbs.2012.306.315] [PMID: 24163956]
[89]
Grether-Beck S, Mühlberg K, Brenden H, et al. Bioactive molecules from the Blue Lagoon: in vitro and in vivo assessment of silica mud and microalgae extracts for their effects on skin barrier function and prevention of skin ageing. Exp Dermatol 2008; 17(9): 771-9.
[http://dx.doi.org/10.1111/j.1600-0625.2007.00693.x] [PMID: 18312388]
[90]
Nasirov MIa, Efendieva FM, Ismaĭlova DA. [The influence of peloids from volcanic deposits in Azerbaijan on the dynamics of sugar content in blood and urine and the wound healing in patients at the early stages of diabetic gangrene of the lower extremities]. Vopr Kurortol Fizioter Lech Fiz Kult 2009; 6(6): 42-3.
[PMID: 20050166]
[91]
Adib-Hajbaghery M, Mahmoudi M, Mashaiekhi M. Shampoo-clay heals diaper rash faster than Calendula officinalis. Nurs Midwifery Stud 2014; 3(2)e14180
[http://dx.doi.org/10.17795/nmsjournal14180] [PMID: 25414900]
[92]
Dário GM, da Silva GG, Gonçalves DL, et al. Evaluation of the healing activity of therapeutic clay in rat skin wounds. Mater Sci Eng C 2014; 43: 109-16.
[http://dx.doi.org/10.1016/j.msec.2014.06.024] [PMID: 25175195]
[93]
Ninan N, Muthiah M, Park IK, Wong TW, Thomas S, Grohens T. Natural polymer/inorganic material based hybrid scaffolds for skin wound healing. Polym Rev (Phila Pa) 2015; 55(3): 453-90. a
[http://dx.doi.org/10.1080/15583724.2015.1019135]
[94]
Oh ST, Kim WR, Kim SH, Chung YC, Park JS. The preparation of polyurethane foam combined with pH-sensitive alginate/bentonite hydrogel for wound dressings. Fibers Polym 2011; 12(2): 159-65.
[http://dx.doi.org/10.1007/s12221-011-0159-4]
[95]
Vaiana CA, Leonard MK, Drummy LF, et al. Epidermal growth factor: layered silicate nanocomposites for tissue regeneration. Biomacromolecules 2011; 12(9): 3139-46.
[http://dx.doi.org/10.1021/bm200616v] [PMID: 21766827]
[96]
Chu CY, Peng FC, Chiu YF, et al. Nanohybrids of silver particles immobilized on silicate platelet for infected wound healing. PLoS One 2012; 7(6)e38360
[http://dx.doi.org/10.1371/journal.pone.0038360] [PMID: 22693632]
[97]
Salcedo I, Aguzzi C, Sandri G, et al. In vitro biocompatibility and mucoadhesion of montmorillonite chitosan nanocomposite: a new drug delivery. Appl Clay Sci 2012; 55: 131-7.
[http://dx.doi.org/10.1016/j.clay.2011.11.006]
[98]
Aguzzi C, Sandri G, Bonferoni C, et al. Solid state characterisation of silver sulfadiazine loaded on montmorillonite/chitosan nanocomposite for wound healing. Colloids Surf B Biointerfaces 2014; 113: 152-7.
[http://dx.doi.org/10.1016/j.colsurfb.2013.08.043] [PMID: 24077113]
[99]
Mishra RK, Ramasamy K, Lim SM, Ismail MF, Majeed ABA. Antimicrobial and in vitro wound healing properties of novel clay based bionanocomposite films. J Mater Sci Mater Med 2014; 25(8): 1925-39.
[http://dx.doi.org/10.1007/s10856-014-5228-y] [PMID: 24831081]
[100]
Barua S, Chattopadhyay P, Aidew L, Buragohain AK, Karak N. Infection-resistant hyperbranched epoxy nanocomposite as a scaffold for skin tissue regeneration. Polym Int 2015; 64: 303-11.
[http://dx.doi.org/10.1002/pi.4790]
[101]
Mohd SS, Abdullah MAA, Mat Amin KA. Gellan gum/clay hydrogels for tissue engineering application: Mechanical, thermal behavior, cell viability, and antibacterial properties. &#8206. J Bioact Compat Polym 2016; 31: 648-66.
[http://dx.doi.org/10.1177/0883911516643106]
[102]
Wang Z, Zhao Y, Luo Y, et al. Attapulgite-doped electrospun poly(lactic-co-glycolic acid) nanofibers enable enhanced osteogenic differentiation of human mesenchymal stem cells. RSC Advances 2015; 5: 2383-91.
[http://dx.doi.org/10.1039/C4RA09839K]
[103]
Demirci S, Suner SS, Sahiner M, Sahiner N. Superporous hyaluronic acid cryogel composites embedding synthetic polyethyleneimine microgels and Halloysite Nanotubes as natural clay. Eur Polym J 2017; 93: 775-84.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.04.022]
[104]
Wu F, Zheng J, Li Z, Liu M. Halloysite nanotubes coated 3D printed PLA pattern for guiding human mesenchymal stem cells (hMSCs) orientation. Chem Eng J 2019; 359: 672-83.
[http://dx.doi.org/10.1016/j.cej.2018.11.145]
[105]
Yang C, Xue R, Zhang Q, et al. Nanoclay cross-linked semi-IPN silk sericin/poly(NIPAm/LMSH) nanocomposite hydrogel: an outstanding antibacterial wound dressing. Mater Sci Eng C 2017; 81: 303-13.
[http://dx.doi.org/10.1016/j.msec.2017.08.008] [PMID: 28887976]
[106]
Ghadiri M, Chrzanowski W, Lee WH, Rohanizadeh R. Layered silicate clay functionalized with amino acids: wound healing application. RSC Advances 2014; 4: 35332-43. a
[http://dx.doi.org/10.1039/C4RA05216A]
[107]
Pacelli S, Paolicelli P, Moretti G, et al. Gellan gum methacrylate and laponite as an innovative nanocomposite hydrogel for biomedical applications. Eur Polym J 2016; 77: 114-23.
[http://dx.doi.org/10.1016/j.eurpolymj.2016.02.007]
[108]
Huang KT, Fang YL, Hsieh PS, Li CC, Dai NT, Huang CJ. Non-sticky and antimicrobial zwitterionic nanocomposite dressings for infected chronic wounds. Biomater Sci 2017; 5(6): 1072-81.
[http://dx.doi.org/10.1039/C7BM00039A] [PMID: 28466896]
[109]
Jones V, Grey JE, Harding KG. Wound dressings. BMJ 2006; 332(7544): 777-80.
[http://dx.doi.org/10.1136/bmj.332.7544.777] [PMID: 16575081]
[110]
AAWC. Association for the Advancement of Wound Care n.d.Available at:. https://aawconline.memberclicks.net/resources
[111]
Ghadiri M, Chrzanowski W, Rohanizadeh R. Antibiotic eluting clay mineral (Laponite®) for wound healing application: an in vitro study. J Mater Sci Mater Med 2014; 25(11): 2513-26. b
[http://dx.doi.org/10.1007/s10856-014-5272-7] [PMID: 25027303]
[112]
Zhao LZ, Zhou CH, Wang J, Tong DS, Yu WH, Wang H. Recent advances in clay mineral-containing nanocomposite hydrogels 2015; 11: 9229-46.
[http://dx.doi.org/10.1039/C5SM01277E]
[113]
Sirousazar M, Kokabi M, Hassan ZM. In vivo and cytotoxic assays of a poly(vinyl alcohol)/clay nanocomposite hydrogel wound dressing. J Biomater Sci Polym Ed 2011; 22(8): 1023-33.
[http://dx.doi.org/10.1163/092050610X497881] [PMID: 20566071]
[114]
Ul-Islam M, Khan T, Khattak WA, Park JK. Bacterial cellulose-MMTs nanoreinforced composite films: novel wound dressing material with antibacterial properties. Cellulose 2013; 20(2): 589-96.
[http://dx.doi.org/10.1007/s10570-012-9849-3]
[115]
Alavi M, Totonchi A, Okhovat MA, Motazedian M, Rezaei P, Atefi M. The effect of a new impregnated gauze containing bentonite and halloysite minerals on blood coagulation and wound healing. Blood Coagul Fibrinolysis 2014; 25(8): 856-9.
[http://dx.doi.org/10.1097/MBC.0000000000000172] [PMID: 25004023]
[116]
Li X, Li Y-C, Chen M, Shi Q, Sun R, Wang X. Chitosan/rectorite nanocomposite with injectable functionality for skin hemostasis. J Mater Chem B Mater Biol Med 2018; 6: 6544-9.
[http://dx.doi.org/10.1039/C8TB01085D]
[117]
Long M, Zhang Y, Huang P, et al. Emerging nanoclay composite for effective hemostasis. Adv Funct Mater 2018; 28(10)1704452
[http://dx.doi.org/10.1002/adfm.201704452]
[118]
Bowman PD, Wang X, Meledeo MA, Dubick MA, Kheirabadi BS. Toxicity of aluminum silicates used in hemostatic dressings toward human umbilical veins endothelial cells, HeLa cells, and RAW267.4 mouse macrophages. J Trauma 2011; 71(3): 727-32.
[http://dx.doi.org/10.1097/TA.0b013e3182033579] [PMID: 21768911]
[119]
Ambrogi V, Pietrella D, Nocchetti M, et al. Montmorillonite-chitosan-chlorhexidine composite films with antibiofilm activity and improved cytotoxicity for wound dressing. J Colloid Interface Sci 2017; 491: 265-72.
[http://dx.doi.org/10.1016/j.jcis.2016.12.058] [PMID: 28049050]
[120]
Shanmugapriya K, Kim H, Saravana PS, Chun BS, Kang HW. Fabrication of multifunctional chitosan-based nanocomposite film with rapid healing and antibacterial effect for wound management. Int J Biol Macromol 2018; 118(Pt B): 1713-25.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.018] [PMID: 29997044]
[121]
Sirousazar M, Jahani-Javanmardi A, Kheiri F, Hassan ZM. In vitro and in vivo assays on egg white/polyvinyl alcohol/clay nanocomposite hydrogel wound dressings. J Biomater Sci Polym Ed 2016; 27(16): 1569-83.
[http://dx.doi.org/10.1080/09205063.2016.1218210] [PMID: 27472819]
[122]
Rangappa S, Rangan KK, Surdashan TS, Murthy SN. Evaluation of lidocaine loaded clay based dermal patch systems. J Drug Deliv Sci Technol 2017; 39: 450-4.
[http://dx.doi.org/10.1016/j.jddst.2017.03.026]
[123]
Rangappa S, Rangan KK, Sudarshan TS, Murthy SN. Antiallodynic and antihyperalgesic activities of fentanyl-loaded dermal clay dressings in rat model of second-degree burn injury. J Pharm Sci 2018; 107(10): 2628-34.
[http://dx.doi.org/10.1016/j.xphs.2018.06.005] [PMID: 29920252]
[124]
Han L, Lu X, Liu K, et al. Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization. ACS Nano 2017; 11: 2561-74.
[125]
Noori S, Kokabi M, Hassan ZM. Poly(vinyl alcohol)/chitosan/ honey/clay responsive nanocomposite hydrogel wound dressing. J Appl Polym Sci 2018; 135(21): 46311.
[http://dx.doi.org/10.1002/app.46311]
[126]
Perioli L, Dorigato A, Pagano C, Leoni M, Pegoretti A. Thermo‐mechanical and adhesive properties of polymeric films based on ZnAl‐hydrotalcite composites for active wound dressings. Polym Eng Sci 2019; 59(S1): E112-9.
[http://dx.doi.org/10.1002/pen.24877]
[127]
Caramella C, Conti B, Modena T, et al. Controlled delivery systems for tissue repair and regeneration J Drug Deliv Sci Technol 2016; 32(B): 06-28.
[128]
Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 2010; 28(3): 325-47.
[http://dx.doi.org/10.1016/j.biotechadv.2010.01.004] [PMID: 20100560]
[129]
Zhang X, Guo R, Xu J, et al. Poly(L-lactide)/halloysite nanotube electrospun mats as dual-drug delivery systems and their therapeutic efficacy in infected full-thickness burns. J Biomater Appl 2015; 30(5): 512-25.
[http://dx.doi.org/10.1177/0885328215593837] [PMID: 26138705]
[130]
Shi R, Niu Y, Gong M, Ye J, Tian W, Zhang L. Antimicrobial gelatin-based elastomer nanocomposite membrane loaded with ciprofloxacin and polymyxin B sulfate in halloysite nanotubes for wound dressing. Mater Sci Eng C 2018; 87: 128-38.
[http://dx.doi.org/10.1016/j.msec.2018.02.025] [PMID: 29549942]
[131]
Tohidi S, Ghaee A, Barzin J. Preparation and characterization of poly (lactic-co-glycolic acid)/chitosan electrospun membrane containing amoxicillin-loaded halloysite nanoclay. Polym Adv Technol 2016; 27(8): 1020-8.
[http://dx.doi.org/10.1002/pat.3764]
[132]
Fox S, Wilkinson TS, Wheatley PS, et al. NO-loaded Zn(2+)-exchanged zeolite materials: a potential bifunctional anti-bacterial strategy. Acta Biomater 2010; 6(4): 1515-21.
[http://dx.doi.org/10.1016/j.actbio.2009.10.038] [PMID: 19861185]
[133]
Neidrauer M, Ercan UK, Bhattacharyya A, et al. Antimicrobial efficacy and wound-healing property of a topical ointment containing nitric-oxide-loaded zeolites. J Med Microbiol 2014; 63(Pt 2): 203-9.
[http://dx.doi.org/10.1099/jmm.0.067322-0] [PMID: 24196133]
[134]
Seifu DG, Isimjan TT, Mequanint K. Tissue engineering scaffolds containing embedded fluorinated-zeolite oxygen vectors. Acta Biomater 2011; 7(10): 3670-8.
[http://dx.doi.org/10.1016/j.actbio.2011.06.010] [PMID: 21704199]
[135]
Grancari AM, Tarbuk A, Ivanica K. Nanoparticles of activated natural zeolite on textiles for protection and therapy. Chem Ind Chem Eng Q 2009; 15(4): 203-10.
[http://dx.doi.org/10.2298/CICEQ0904203G]
[136]
Ninan N, Muthiah M, Park IK, et al. Faujasites incorporated tissue engineering scaffolds for wound healing: in vitro and in vivo analysis. ACS Appl Mater Interfaces 2013; 5(21): 11194-206.
[http://dx.doi.org/10.1021/am403436y] [PMID: 24102066]
[137]
Ninan N, Muthiah M, Bt Yahaya NA, et al. Antibacterial and wound healing analysis of gelatin/zeolite scaffolds. Colloids Surf B Biointerfaces 2014; 115: 244-52.
[http://dx.doi.org/10.1016/j.colsurfb.2013.11.048] [PMID: 24362063]
[138]
Ninan N, Muthiah M, Park IK, et al. In vitro and in vivo evaluation of pectin/copper exchanged faujasite composite membranes. J Biomed Nanotechnol 2015; 11(9): 1550-67. b
[http://dx.doi.org/10.1166/jbn.2015.2098] [PMID: 26485926]
[139]
Asraf MH, Nik Malek NAN, Jemon K, Sani NS, Muhammad MS. Antibacterial, cytotoxicity and wound healing assessments ofamine-functionalised zeolite Y. Particuology 2019; 45: 116-23.
[http://dx.doi.org/10.1016/j.partic.2018.09.006]
[140]
Uraloglu M. Livaog lu M, Agdogan O, Mungan S, Alhan E, Karaçal N. An evaluation of five different dressing materials on split-thickness skin graft donor site and full-thickness cutaneous wounds: an experimental study. Int Wound J 2014; 11: 85.
[http://dx.doi.org/10.1111/j.1742-481X.2012.01071.x] [PMID: 22943661]
[141]
Barbosa GP, Debone HS, Severino P, Souto EB, da Silva CF. Design and characterization of chitosan/zeolite composite films--Effect of zeolite type and zeolite dose on the film properties. Mater Sci Eng C 2016; 60: 246-54.
[http://dx.doi.org/10.1016/j.msec.2015.11.034] [PMID: 26706528]
[142]
Salehi H, Mehrasa M, Nasri-Nasrabadi B, et al. Effects of nanozeolite/starch thermoplastic hydrogels on wound healing. J Res Med Sci 2017; 22: 110.
[http://dx.doi.org/10.4103/jrms.JRMS_1037_16] [PMID: 29026426]
[143]
Kocaaga B, Kurkcuoglu O, Tatlier M, Batirel S, Guner FS. Low-methoxyl pectin–zeolite hydrogels controlling drug release promote in vitro wound healing. J Appl Polym Sci 2019; 136(24): 2-16.
[http://dx.doi.org/10.1002/app.47640]
[144]
Ostomel TA, Stoimenov PK, Holden PA, Alam HB, Stucky GD. Host-guest composites for induced hemostasis and therapeutic healing in traumatic injuries. J Thromb Thrombolysis 2006; 22(1): 55-67.
[http://dx.doi.org/10.1007/s11239-006-7658-y] [PMID: 16786234]
[145]
Alam HB, Uy GB, Miller D, et al. Comparative analysis of hemostatic agents in a swine model of lethal groin injury. J Trauma 2003; 54(6): 1077-82.
[http://dx.doi.org/10.1097/01.TA.0000068258.99048.70] [PMID: 12813325]
[146]
Alam HB1. Chen Z, Jaskille A, et al. Application of a zeolite hemostatic agent achieves 100% survival in a lethal model of complex groin injury in Swine. J Trauma 2004; 56: 974-83.
[http://dx.doi.org/10.1097/01.TA.0000127763.90890.31]
[147]
Li Y, Li H, Xiao L, et al. Hemostatic efficiency and wound healing properties of natural zeolite granules in a lethal rabbit model of complex groin injury. Materials (Basel) 2012; 5(12): 2586-96.
[http://dx.doi.org/10.3390/ma5122586]
[148]
Paydar S, Noorafshan A, Dalfardi B, et al. Structural alteration in dermal vessels and collagen bundles following exposure of skin wound to zeolite-bentonite compound. J Pharm (Cairo) 2016; 20165843459
[http://dx.doi.org/10.1155/2016/5843459] [PMID: 28116221]
[149]
Yu L, Shang X, Chen H, Xiao L, Zhu Y, Fan J. A tightly bonded and flexible mesoporous zeolite-cotton hybrid hemostat. Nat Commun 2019a; 10: 1932.
[http://dx.doi.org/10.1038/s41467-019-09849-9]
[150]
Bayram Y, Deveci M, Imirzalioglu N, Soysal Y, Sengezer M. The cell based dressing with living allogenic keratinocytes in the treatment of foot ulcers: a case study. Br J Plast Surg 2005; 58(7): 988-96.
[http://dx.doi.org/10.1016/j.bjps.2005.04.031] [PMID: 16040019]
[151]
Fazli Y, Shariatinia Z. Controlled release of cefazolin sodium antibiotic drug from electrospun chitosan-polyethylene oxide nanofibrous Mats. Mater Sci Eng C 2017; 71: 641-52.
[http://dx.doi.org/10.1016/j.msec.2016.10.048] [PMID: 27987755]
[152]
Yao L, Sawvel AM, Jun YS, et al. Cytotoxicity and potency of mesocellular foam-26 in comparison to layered clays used as hemostatic agents. Toxicol Res 2013; 2: 136-44.
[http://dx.doi.org/10.1039/C2TX20065A]
[153]
Jin HMHG, Zhang GP. Effects of tourmaline on the proliferation of human endothelial cells using millicell membrane culture dish. J Chin Microcirculation 2003; pp. 309-11.
[154]
Xia MSHC, Zhang HM, Xiong L, et al. Effects of tourmaline treated water on the growth and the activity of alkaline phosphatase of CaCo-2 cell. Chin J Cell Biol 2003; 12: 222-5.
[155]
Zou Q, Cai B, Li J, Li J, Li Y. In vitro and in vivo evaluation of the chitosan/Tur composite film for wound healing applications. J Biomater Sci Polym Ed 2017; 28(7): 601-15.
[http://dx.doi.org/10.1080/09205063.2017.1289036] [PMID: 28277010]
[156]
Wuollett M, Wuollett S. . inventors; Protege Biomedical LLC., assignee.Composition and dressing for wound treatment. Canada CA2848351A1 2013.
[157]
Gonzalez JS, Maiolo AS, Hoppe CE, Alvarez VA. Composite gels based on poly (vinyl alcohol) for biomedical uses. Procedia Materials Science 2012; 1: 483-90.
[http://dx.doi.org/10.1016/j.mspro.2012.06.065]
[158]
Catanzano O, Acierno S, Russo P, et al. Melt-spun bioactive sutures containing nanohybrids for local delivery of anti-inflammatory drugs. Mater Sci Eng C 2014; 43: 300-9.
[http://dx.doi.org/10.1016/j.msec.2014.07.012] [PMID: 25175217]
[159]
Fu Q, Rahaman MN, Fu H, Liu X. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. J Biomed Mater Res A 2010; 95(1): 164-71.
[http://dx.doi.org/10.1002/jbm.a.32824] [PMID: 20544804]
[160]
Hu H, Tang Y, Pang L, et al. Angiogenesis and full-thickness wound healing efficiency of a copper-doped borate bioactive glass/poly(lactic-co-glycolic acid) dressing loaded with vitamin e in vivo and in vitro. ACS Appl Mater Interfaces 2018; 10(27): 22939-50. a
[http://dx.doi.org/10.1021/acsami.8b04903] [PMID: 29924595]
[161]
Yang G, Zhang M, Qi B, et al. Nanoparticle-based strategies and approaches for the treatment of chronic wounds. J Biomater Tissue Eng 2018; 8: 455-64.
[http://dx.doi.org/10.1166/jbt.2018.1776]
[162]
Mouriño V, Cattalini JP, Boccaccini AR. Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J R Soc Interface 2012; 9(68): 401-19.
[http://dx.doi.org/10.1098/rsif.2011.0611] [PMID: 22158843]
[163]
Olaifa AK, Fadason ST. Studies on zinc and copper ion in relation to wound healing in male and female west african dwarf goats. Niger J Physiol Sci 2017; 31(2): 171-6.
[PMID: 28262855]
[164]
Coger V, Million N, Rehbock C, et al. Tissue concentrations of zinc, iron, copper, and magnesium during the phases of full thickness wound healing in a rodent model. Biol Trace Elem Res 2019; 191(1): 167-76.
[http://dx.doi.org/10.1007/s12011-018-1600-y] [PMID: 30552609]
[165]
Wlaschek M, Singh K, Sindrilaru A, Crisan D, Scharffetter-Kochanek K. Iron and iron-dependent reactive oxygen species in the regulation of macrophages and fibroblasts in non-healing chronic wounds. Free Radic Biol Med 2019; 133: 262-75.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.09.036] [PMID: 30261274]
[166]
Klasen HJ. A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns 2000; 26(2): 131-8.
[http://dx.doi.org/10.1016/S0305-4179(99)00116-3] [PMID: 10716355]
[167]
Hanif J, Tasca RA, Frosh A, Ghufoor K, Stirling R. Silver nitrate: histological effects of cautery on epithelial surfaces with varying contact times. Clin Otolaryngol Allied Sci 2003; 28(4): 368-70.
[http://dx.doi.org/10.1046/j.1365-2273.2003.00727.x] [PMID: 12871255]
[168]
Antonangelo L, Vargas FS, Teixeira LR, et al. Pleurodesis induced by talc or silver nitrate: evaluation of collagen and elastic fibers in pleural remodeling. Lung 2006; 184(2): 105-11.
[http://dx.doi.org/10.1007/s00408-005-2569-9] [PMID: 16622780]
[169]
Verma P, Maheshwari SK. Applications of Silver nanoparticles in diverse sectors. Int J Nanodimens 2019; 10(1): 18-36.
[170]
Kwan KHL, Liu X, To MKT, Yeung KWK, Ho CM, Wong KKY. Modulation of collagen alignment by silver nanoparticles results in better mechanical properties in wound healing. Nanomedicine (Lond) 2011; 7(4): 497-504.
[http://dx.doi.org/10.1016/j.nano.2011.01.003] [PMID: 21272666]
[171]
Lu B, Lu F, Zou Y, et al. In situ reduction of silver nanoparticles by chitosan-l-glutamic acid/hyaluronic acid: enhancing antimicrobial and wound-healing activity. Carbohydr Polym 2017; 173: 556-65.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.035] [PMID: 28732899]
[172]
Orlowski P, Zmigrodzka M, Tomaszewska E, et al. Tannic acid-modified silver nanoparticles for wound healing: the importance of size. Int J Nanomedicine 2018; 13: 991-1007.
[http://dx.doi.org/10.2147/IJN.S154797] [PMID: 29497293]
[173]
Tian J, Wong KK, Ho CM, et al. Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem 2007; 2(1): 129-36.
[http://dx.doi.org/10.1002/cmdc.200600171] [PMID: 17075952]
[174]
Bhol KC, Schechter PJ. Effects of nanocrystalline silver (NPI 32101) in a rat model of ulcerative colitis. Dig Dis Sci 2007; 52(10): 2732-42.
[http://dx.doi.org/10.1007/s10620-006-9738-4] [PMID: 17436088]
[175]
Nadworny PL, Landry BK, Wang J, Tredget EE, Burrell RE. Does nanocrystalline silver have a transferable effect? Wound Repair Regen 2010; 18(2): 254-65.
[http://dx.doi.org/10.1111/j.1524-475X.2010.00579.x] [PMID: 20409150]
[176]
David L, Moldovan B, Vulcu A, et al. Green synthesis, characterization and anti-inflammatory activity of silver nanoparticles using European black elderberry fruits extract. Colloids Surf B Biointerfaces 2014; 122: 767-77.
[http://dx.doi.org/10.1016/j.colsurfb.2014.08.018] [PMID: 25174985]
[177]
Krishnan N, Velramar B, Ramatchandirin B, et al. Effect of biogenic silver nanocubes on matrix metalloproteinases 2 and 9 expressions in hyperglycemic skin injury and its impact in early wound healing in streptozotocin-induced diabetic mice. Mater Sci Eng C 2018; 91: 146-52.
[http://dx.doi.org/10.1016/j.msec.2018.05.020] [PMID: 30033241]
[178]
Ran L, Zou Y, Cheng J, Lu F. Silver nanoparticles in situ synthesized by polysaccharides from Sanghuangporus sanghuang and composites with chitosan to prepare scaffolds for the regeneration of infected full-thickness skin defects. Int J Biol Macromol 2019; 125: 392-403.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.052] [PMID: 30529352]
[179]
Ye H, Cheng J, Yu K. In situ reduction of silver nanoparticles by gelatin to obtain porous silver nanoparticle/chitosan composites with enhanced antimicrobial and wound-healing activity. Int J Biol Macromol 2019; 121: 633-42.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.056] [PMID: 30326224]
[180]
Kalishwaralal K, Banumathi E, Ram Kumar Pandian S, et al. Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids Surf B Biointerfaces 2009; 73(1): 51-7.
[http://dx.doi.org/10.1016/j.colsurfb.2009.04.025] [PMID: 19481908]
[181]
Hu M, Li C, Li X, et al. Zinc oxide/silver bimetallic nanoencapsulated in PVP/PCL nanofibres for improved antibacterial activity. Artif Cells Nanomed Biotechnol 2018; 46(6): 1248-57. b
[http://dx.doi.org/10.1080/21691401.2017.1366339] [PMID: 28826242]
[182]
Moura D, Souza MT, Liverani L, et al. Development of a bioactive glass-polymer composite for wound healing applications. Mater Sci Eng C 2017; 76: 224-32.
[http://dx.doi.org/10.1016/j.msec.2017.03.037] [PMID: 28482521]
[183]
Depan D, Misra RDK. Hybrid nanoscale architecture of wound dressing with super hydrophilic, antimicrobial and ultralow fouling attributes. J Biomed Nanotechnol 2015; 11(2): 306-18.
[http://dx.doi.org/10.1166/jbn.2015.1908] [PMID: 26349306]
[184]
Babitha S, Korrapati PS. Biodegradable zein-polydopamine polymeric scaffold impregnated with TiO2 nanoparticles for skin tissue engineering. Biomed Mater 2017; 12(5)055008
[http://dx.doi.org/10.1088/1748-605X/aa7d5a] [PMID: 28944761]
[185]
Wang X, Lv F, Li T, et al. Electrospun micropatterned nanocomposites incorporated with Cu2S nanoflowers for skin tumor therapy and wound healing. ACS Nano 2017; 11(11): 11337-49.
[http://dx.doi.org/10.1021/acsnano.7b05858] [PMID: 29059516]
[186]
Xu X, Liu X, Tan L, et al. Controlled-temperature photothermal and oxidative bacteria killing and acceleration of wound healing by polydopamine-assisted Au-hydroxyapatite nanorods. Acta Biomater 2018; 77: 352-64.
[http://dx.doi.org/10.1016/j.actbio.2018.07.030] [PMID: 30030176]
[187]
Wang S, Yan C, Zhang X, et al. Antimicrobial peptide modification enhances the gene delivery and bactericidal efficiency of gold nanoparticles for accelerating diabetic wound healing. Biomater Sci 2018; 6(10): 2757-72.
[http://dx.doi.org/10.1039/C8BM00807H] [PMID: 30187036]
[188]
Yang X, Wei Q, Shao H, Jiang X. Multivalent aminosaccharide-based gold nanoparticles as narrow-spectrum antibiotics in vivo. ACS Appl Mater Interfaces 2019; 11(8): 7725-30.
[http://dx.doi.org/10.1021/acsami.8b19658] [PMID: 30714714]
[189]
Pan A, Zhong M, Wu H, et al. Topical application of keratinocyte growth factor conjugated gold nanoparticles accelerate wound healing. Nanomedicine (Lond) 2018; 14(5): 1619-28.
[http://dx.doi.org/10.1016/j.nano.2018.04.007] [PMID: 29698728]
[190]
Luong D, Yergeshov AA, Zoughaib M, et al. Transition metal-doped cryogels as bioactive materials for wound healing applications. Mater Sci Eng C 2019; 103109759.
[http://dx.doi.org/10.1016/j.msec.2019.109759] [PMID: 31349449]
[191]
Yu Y, Li P, Zhu C, Ning N, Zhang S, Vancso GJ. Multifunctional and recyclable photothermally responsive cryogels as efficient platforms for wound healing. Adv Funct Mater 2019; 29(35)1904402 b
[http://dx.doi.org/10.1002/adfm.201904402]