Simultaneous Determination of Medicinal Drugs with Overlapping Profiles Contained in Low Chromatographic Resolution Data using HPLC-DAD and Multivariate Curve Resolution

Page: [843 - 853] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: The increasing demand of effective pharmaceutical products directed to fight against malaria lead to the combination of at least two antimalarial drugs. This combination aims to minimize the Plasmodium falciparum resistance which is found when the most frequently used drugs are taken individually. Within this context, proguanil hydrochloride and chloroquine phosphate which have independent modes of action are taken together to prevent malaria. This paper aims to develop a fast and powerful analytical method for the simultaneous determination of proguanil hydrochloride and chloroquine phosphate in the commercial Paludrine/Avloclor dosage forms using a multi-way chromatographic calibration based on high-performance liquid chromatography with diode array detection (HPLC-DAD) and multivariate curve resolution – alternating leastsquares (MCR-ALS).

Methods: A rapid and powerful analytical method based on HPLC-DAD and MCR-ALS was developed for the simultaneous quantification of proguanil hydrochloride and chloroquine phosphate in the commercial Paludrine/Avloclor antimalarial drugs. An isocratic mobile phase composed by 0.2 M ammonium acetate, acetonitrile, and methanol (40:25:35) and a flow rate of 1.2 mL min-1 were employed in the chromatographic runs with an elution time about 5 min.

Results: This approach demonstrates that chromatographic analysis may become considerably simpler and economical in terms of time, cost, and organic solvent consumption when coupled to multiway calibration models such as MCR-ALS. In fact, this multi-way chromatographic calibration based on second-order HPLC-DAD data matrices (with extremely low chromatographic resolution) and MCR-ALS allows the development of greener analytical methods for complex samples. The proposed analytical method allowed the simultaneous quantification of two antimalarial APIs present in the commercial Paludrine/Avloclor drugs with low REP values below 8% for the simultaneous determination of proguanil hydrochloride and chloroquine phosphate.

Conclusion: The proposed multi-way chromatographic strategy can be used for routine control of pharmaceutical dosage forms. It should be highlighted that MCR-ALS allowed to: (a) achieve the second- order advantage and the quantification of analytes in the presence of uncalibrated compounds such as coeluted profile measured in different magnitude of the signal in each successive chromatographic run and significant overlapping profiles and (b) separate the contribution of several components from chromatographic runs with extremely low separation of peaks through the deconvolution of the signal obtained, performing the so-called mathematical chromatography.

Keywords: Chloroquine phosphate, HPLC-DAD, MCR-ALS, overlapping profiles, proguanil hydrochloride, simultaneous determination.

Graphical Abstract

[1]
World Health Organization. W.H.O. Antimalarial drug combination therapy. Report of a who technical consultation. 2001.http://apps.who.int/iris/bitstream/handle/10665/66952/WHO_CDS_RBM_2001.35.pdf;jsessionid=42018DE7A7F22B5E18380F30496534C6?sequence=1
[2]
Camus, D.; Djossou, F.; Schilthuis, H.J.; Høgh, B.; Dutoit, E.; Malvy, D.; Roskell, N.S.; Hedgley, C.; De Boever, E.H.; Miller, G.B. International Malarone Study Team. Atovaquone-proguanil versus chloroquine-proguanil for malaria prophylaxis in nonimmune pediatric travelers: Results of an international, randomized, open-label study. Clin. Infect. Dis., 2004, 38(12), 1716-1723.
[http://dx.doi.org/10.1086/421086] [PMID: 15227617]
[3]
Mishra, M.; Mishra, V.K.; Kashaw, V.; Iyer, A.K.; Kashaw, S.K. Comprehensive review on various strategies for antimalarial drug discovery. Eur. J. Med. Chem., 2017, 125, 1300-1320.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.025] [PMID: 27886547]
[4]
Olliaro, P. Mode of action and mechanisms of resistance for antimalarial drugs. Pharmacol. Ther., 2001, 89(2), 207-219.
[http://dx.doi.org/10.1016/S0163-7258(00)00115-7] [PMID: 11316521]
[5]
Matsika-Claquin, M.D.; Ménard, D.; Fontanet, A.L.; Ngwhotue, A.; Sarda, J.; Talarmin, A. Efficacy of chloroquine-proguanil malaria prophylaxis in a non-immune population in Bangui, Central African Republic: A case-control study. Trans. R. Soc. Trop. Med. Hyg., 2006, 100(4), 381-386.
[http://dx.doi.org/10.1016/j.trstmh.2005.07.022] [PMID: 16313935]
[6]
Thomé, R.; Lopes, S.C.P.; Costa, F.T.M.; Verinaud, L. Chloroquine: Modes of action of an undervalued drug. Immunol. Lett., 2013, 153(1-2), 50-57.
[http://dx.doi.org/10.1016/j.imlet.2013.07.004] [PMID: 23891850]
[7]
Ryley, J.F. The mode of action of proguanil and related antimalarial drugs. Br. J. Pharmacol. Chemother., 1953, 8(4), 424-430.
[http://dx.doi.org/10.1111/j.1476-5381.1953.tb01341.x] [PMID: 13115632]
[8]
Taylor, R.B.; Behrens, R.; Moody, R.R.; Wangboonskul, J. Assay method for the simultaneous determination of proguanil, chloroquine and their major metabolites in biological fluids. J. Chromatogr. A, 1990, 527(2), 490-497.
[http://dx.doi.org/10.1016/S0378-4347(00)82136-2] [PMID: 2387892]
[9]
Chaulet, J.F.; Grelaud, G.; Bellemin-Magninot, P.; Mounier, C.; Brazier, J.L. Simultaneous determination of chloroquine, proguanil and their metabolites in human biological fluids by high performance liquid chromatography. J. Pharm. Biomed. Anal., 1994, 12(1), 111-117.
[http://dx.doi.org/10.1016/0731-7085(94)80018-9] [PMID: 8161597]
[10]
Lejeune, D.; Souletie, I.; Houzé, S. Le bricon, T.; Le bras, J.; Gourmel, B.; Houzé, P. Simultaneous determination of monodesethylchloroquine, chloroquine, cycloguanil and proguanil on dried blood spots by reverse-phase liquid chromatography. J. Pharm. Biomed. Anal., 2007, 43(3), 1106-1115.
[http://dx.doi.org/10.1016/j.jpba.2006.09.036] [PMID: 17097257]
[11]
Rault, J.P.; Hasselot, N.; Renard, C.; Cheminel, V.; Chaulet, J.F. Unreliability of saliva samples for monitoring chloroquine and proguanil levels during anti-malarial chemoprophylaxis. Gen. Pharmacol., 1996, 27(1), 65-67.
[http://dx.doi.org/10.1016/0306-3623(95)00087-9] [PMID: 8742495]
[12]
Paci, A.; Caire-Maurisier, A.M.; Rieutord, A.; Brion, F.; Clair, P. Dual-mode gradient HPLC procedure for the simultaneous determination of chloroquine and proguanil. J. Pharm. Biomed. Anal., 2002, 27(1-2), 1-7.
[http://dx.doi.org/10.1016/S0731-7085(01)00555-6] [PMID: 11682204]
[13]
Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 principles of green analytical chemistry and the significance mnemonic of green analytical practices. Trends Analyt. Chem., 2013, 50, 78-84.
[http://dx.doi.org/10.1016/j.trac.2013.04.010]
[14]
Bro, R.; Vidal, M. EEMizer: Automated modeling of fluorescence EEM data. Chemom. Intell. Lab. Syst., 2011, 106, 86-92.
[http://dx.doi.org/10.1016/j.chemolab.2010.06.005]
[15]
Olivieri, A.C.; Escandar, G.M. Practical three-way calibration; Elsevier: Waltham, 2014.
[16]
Arancibia, J.A.; Damiani, P.C.; Escandar, G.M.; Ibañez, G.A.; Olivieri, A.C. A review on second- and third-order multivariate calibration applied to chromatographic data. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 910, 22-30.
[http://dx.doi.org/10.1016/j.jchromb.2012.02.004] [PMID: 22365532]
[17]
Escandar, G.M.; Olivieri, A.C. Multi-way chromatographic calibration-A review. J. Chromatogr. A, 2019, 1587, 2-13.
[http://dx.doi.org/10.1016/j.chroma.2019.01.012] [PMID: 30651205]
[18]
MATLAB 7.12.0 (R2011a). The Math Works, Natick, MA;. 2011.
[19]
Olivieri, A.C.; Wu, H.L.; Yu, R.Q. MVC2: A matlab graphical interface toolbox for second-order multivariate calibration. Chemom. Intell. Lab. Syst., 2009, 96, 246-251.
[http://dx.doi.org/10.1016/j.chemolab.2009.02.005]
[21]
Tauler, R. Multivariate curve resolution applied to second order data. Chemom. Intell. Lab. Syst., 1995, 30, 133-146.
[http://dx.doi.org/10.1016/0169-7439(95)00047-X]
[22]
Tauler, R.; Maeder, M.; de Juan, A. Multiset data analysis: extended multivariate curve resolution.Comprehensive chemometrics; Brown, S.; Tauler, R; Walczak, B., Ed.; Elsevier: Oxford, 2009, pp. 473-505.
[http://dx.doi.org/10.1016/B978-044452701-1.00055-7]
[23]
Parastar, H.; Tauler, R. Multivariate curve resolution of hyphenated and multidimensional chromatographic measurements: a new insight to address current chromatographic challenges. Anal. Chem., 2014, 86(1), 286-297.
[http://dx.doi.org/10.1021/ac402377d] [PMID: 24251834]
[24]
Olivieri, A.C. Analytical advantages of multivariate data processing. One, two, three, infinity? Anal. Chem., 2008, 80(15), 5713-5720.
[http://dx.doi.org/10.1021/ac800692c] [PMID: 18613646]
[25]
Neves, A.C.O.; Tauler, R.; de Lima, K.M.G. Area correlation constraint for the MCR-ALS quantification of cholesterol using EEM fluorescence data: A new approach. Anal. Chim. Acta, 2016, 937, 21-28.
[http://dx.doi.org/10.1016/j.aca.2016.08.011] [PMID: 27590541]
[26]
Olivieri, A.C. Analytical figures of merit: from univariate to multiway calibration. Chem. Rev., 2014, 114(10), 5358-5378.
[http://dx.doi.org/10.1021/cr400455s] [PMID: 24645983]
[27]
Bauza, M.C.; Ibañez, G.A.; Tauler, R.; Olivieri, A.C. Sensitivity equation for quantitative analysis with multivariate curve resolution-alternating least-squares: Theoretical and experimental approach. Anal. Chem., 2012, 84(20), 8697-8706.
[http://dx.doi.org/10.1021/ac3019284] [PMID: 22962964]
[28]
Olivieri, A.C. Practical guidelines for reporting results in single- and multi-component analytical calibration: A tutorial. Anal. Chim. Acta, 2015, 868, 10-22.
[http://dx.doi.org/10.1016/j.aca.2015.01.017] [PMID: 25813230]
[29]
Booksh, K.S.; Kowalski, B.R. Theory of analytical chemistry. Anal. Chem., 1994, 66, 782A-791A.
[http://dx.doi.org/10.1021/ac00087a718]