Synthesis and Biological Activity of Quaternary Quinolinium Salts: A Review

Page: [2271 - 2294] Pages: 24

  • * (Excluding Mailing and Handling)

Abstract

Heterocyclic chemistry is the only branch of chemistry that has applications in varied areas such as dyes, photosensitizers, coordination compounds, polymeric materials, biological, and many other fields. Quinoline and its derivatives have always engrossed both synthetic chemists and biologists because of their diverse chemical and pharmacological properties as these ring systems can be easily found in various natural products, especially in alkaloids. Among alkaloids, quinoline derivatives i.e. quinolinium salts have attracted much attention nowadays owing to their diverse biological profile such as antimicrobial, antitumor, antifungal, hypotensive, anti-HIV, analgesics and anti-inflammatory, etc. Quinoline and its analogs have recently been examined for their modes of function in the inhibition of tyrosine kinases, proteasome, tubulin polymerization, topoisomerase, and DNA repair. These observations have been guiding scientists for the expansion of new quinoline derivatives with improved and varied biological activities. Quinolinium salts have immense possibilities and scope to investigate these compounds as potential drug candidates. Therefore, we shall present a concise compilation of this work to aid in present knowledge and to help researchers explore an interesting quinoline class having medicinal potential.

Keywords: Quinoline, quinolinium salts, antimicrobial, alkyl halide, cationic surfactants, antifungal, anticancer, sensors.

Graphical Abstract

[1]
Mishra, A.; Behera, R.K.; Behera, P.K.; Mishra, B.K.; Behera, G.B. Cyanines during the 1990s: A review. Chem. Rev., 2000, 100(6), 1973-2012.
[http://dx.doi.org/10.1021/cr990402t] [PMID: 11749281]
[2]
Kumar, D.; Mitra, S.; Phukan, S.; Kumar, A.; Shekar, K.P.C.; Mishra, B. Facile Synthesis, characterization and fluorescence studies novel porphyrin appended thiazole. J. Heterocycl. Chem., 2013, 50, 125-128.
[http://dx.doi.org/10.1002/jhet.1009]
[3]
Garcia-Valverde, M.; Torroba, T. Special issue: Sulfur-nitrogen heterocycles. Molecules, 2005, 10, 318-320.
[http://dx.doi.org/10.3390/10020318]
[4]
Dube, J.W.; Ragogna, P.J. Synthesis and onwards coordination of an As(I) centered zwitterion. Chemistry, 2013, 19(35), 11768-11775.
[http://dx.doi.org/10.1002/chem.201301003] [PMID: 23846815]
[5]
Xiong, Y.; Yao, S.; Driess, M. Coordination of N-heterocyclic carbene to H2SiX2 (X = Cl, OTf) and H3SiOTf (OTf = OSO2CF3): Synthesis of donor stabilized parent silylium salts with four and five coordinate silicon atoms. J. Chem. Sci., 2013, 68, 445-452.
[6]
Luo, Y.; Li, B.; Wang, W.; Wu, K.; Tan, B. Hypercrosslinked aromatic heterocyclic microporous polymers: a new class of highly selective CO2 capturing materials. Adv. Mater., 2012, 24(42), 5703-5707.
[http://dx.doi.org/10.1002/adma.201202447] [PMID: 23008146]
[7]
Sunitha, M.S.; Vishnumurthy, K.A.; Adhikari, A.V. Synthesis and two-photon absorption property of new Π conjugated donor – acceptor polymers carrying different heteroaromatics. J. Chem. Sci., 2013, 125, 29-40.
[http://dx.doi.org/10.1007/s12039-013-0366-1]
[8]
Katritzky, A.R.; Ramsden, C.A.; Scriven, E.F.V.; Taylor, J.K. Comprehensive heterocyclic chemistry III, 2008, 21-24.
[9]
Martins, P.; Jesus, J.; Santos, S.; Raposo, L.R.; Roma-Rodrigues, C.; Baptista, P.V.; Fernandes, A.R. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules, 2015, 20(9), 16852-16891.
[http://dx.doi.org/10.3390/molecules200916852] [PMID: 26389876]
[10]
Lamberth, C.; Dinges, J. The Significance of Heterocycles for Pharmaceuticals and Agrochemicals. Bioactive Heterocyclic Compound Classes: Pharmaceuticals, Ist Ed; Wiley-VCH Verleg GmbH & Co. KGaA, 2012.
[11]
Singh, K.; Arora, D.; Poremsky, E.; Lowery, J.; Moreland, R.S. N1-Alkylated 3,4-dihydropyrimidine-2(1H)-ones: Convenient one-pot selective synthesis and evaluation of their calcium channel blocking activity. Eur. J. Med. Chem., 2009, 44(5), 1997-2001.
[http://dx.doi.org/10.1016/j.ejmech.2008.10.002] [PMID: 19008020]
[12]
Jain, N.; Utreja, D.; Dhillon, N.K. A convenient one pot synthesis and antinemic studies of nicotinic acid derivatives. Russ. J. Org. Chem., 2019, 55(6), 845-851.
[http://dx.doi.org/10.1134/S1070428019060150]
[13]
Sharma, A.; Singh, S.; Utreja, D. Recent advances in synthesis and antifungal activity of 1,3,5-triazines. Curr. Org. Synth., 2016, 13, 484-503.
[http://dx.doi.org/10.2174/1570179412666150905002356]
[14]
Kaur, J.; Utreja, D.; Dhillon, N.K.; Sharma, S. Synthesis of series of triazine derivatives and evaluation against root knot nematode Meloidogyne incognita. Lett. Org. Chem., 2018, 15(10), 870-877.
[http://dx.doi.org/10.2174/1570178615666180330155049]
[15]
Anamika; Utreja, D.; Ekta; Jain, N.; Sharma, S. Advances in synthesis and potentially bioactive coumarin derivatives. Curr. Org. Chem., 2018, 22, 2507-2534.
[16]
Kaur, J.; Utreja, D. Ekta, Jain, N.; Sharma, S. Recent developments in the synthesis and antimicrobial activity of indole and its derivatives. Curr. Org. Synth., 2019, 16, 17-37.
[http://dx.doi.org/10.2174/1570179415666181113144939]
[17]
Baumann, M.; Baxendale, I.R. An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles. Beilstein J. Org. Chem., 2013, 9, 2265-2319.
[http://dx.doi.org/10.3762/bjoc.9.265] [PMID: 24204439]
[18]
Balaban, A.T.; Oniciu, D.C.; Katritzky, A.R. Aromaticity as a cornerstone of heterocyclic chemistry. Chem. Rev., 2004, 104(5), 2777-2812.
[http://dx.doi.org/10.1021/cr0306790] [PMID: 15137807]
[19]
Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57(24), 10257-10274.
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204]
[20]
Wang, R.; Xu, K.; Shi, W. Quinolone derivatives: Potential anti-HIV agent-development and application. Arch. Pharm. Chem. Life Sci., 2019, 352(9) e1900045
[21]
Song, Y.; Chen, W.; Kang, D.; Zhang, Q.; Zhan, P.; Liu, X. “Old friends in new guise”: exploiting privileged structures for scaffold re-evolution/refining. Comb. Chem. High Throughput Screen., 2014, 17(6), 536-553.
[http://dx.doi.org/10.2174/1386207317666140122101631] [PMID: 24446784]
[22]
Song, Y.; Zhan, P.; Liu, X. Heterocycle-thioacetic acid motif: A privileged molecular scaffold with potent, broad-ranging pharmacological activities. Curr. Pharm. Des., 2013, 19(40), 7141-7154.
[http://dx.doi.org/10.2174/13816128113199990505] [PMID: 23859548]
[23]
Song, Y.; Zhan, P.; Zhang, Q.; Liu, X. Privileged scaffolds or promiscuous binders: A glance of pyrrolo[2,1-f][1,2,4]triazines and related bridgehead nitrogen heterocycles in medicinal chemistry. Curr. Pharm. Des., 2013, 19(8), 1528-1548.
[PMID: 23131184]
[24]
Ju, H.; Zhan, P.; Liu, X. Designing influenza polymerase acidic endonuclease inhibitors via ‘privileged scaffold’ re-evolution/refining strategy. Future Med. Chem., 2019, 11(4), 265-268.
[http://dx.doi.org/10.4155/fmc-2018-0489] [PMID: 30763130]
[25]
Kumari, A.; Singh, R.K. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg. Chem., 2019, 89 103021
[http://dx.doi.org/10.1016/j.bioorg.2019.103021] [PMID: 31176854]
[26]
Mahapatra, D.K.; Bharti, S.K.; Asati, V.; Singh, S.K. Perspectives of medicinally privileged chalcone based metal coordination compounds for biomedical applications. Eur. J. Med. Chem., 2019, 174, 142-158.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.032] [PMID: 31035237]
[27]
Winstead, A.J.; Nyambura, G.; Matthews, R.; Toney, D.; Oyaghire, S. Synthesis of quaternary heterocyclic salts. Molecules, 2013, 18(11), 14306-14319.
[http://dx.doi.org/10.3390/molecules181114306] [PMID: 24256924]
[28]
Kumar, S.; Bawa, S.; Gupta, H. Biological activities of quinoline derivatives. Mini Rev. Med. Chem., 2009, 9(14), 1648-1654.
[http://dx.doi.org/10.2174/138955709791012247] [PMID: 20088783]
[29]
Kainth, S.; Garg, A.; Kaur, M.; Divya, K.J.; Kaur, J. Quaternary quinolinium salts as new antifungal agent for protection of rice crop. Indian J. Eco., 2016, 43(1), 170-173.
[30]
Musiol, R.; Serda, M.; Hensel-Bielowka, S.; Polanski, J. Quinoline-based antifungals. Curr. Med. Chem., 2010, 17(18), 1960-1973.
[http://dx.doi.org/10.2174/092986710791163966] [PMID: 20377510]
[31]
Bolden, S.; Boateng, C.A.; Zhu, X.Y.; Etukala, J.R.; Eyunni, S.K.; Jacob, M.R.; Khan, S.I.; Ablordeppey, S.Y. CoMFA studies and in vitro evaluation of some 3-substituted benzylthio quinolinium salts as anticryptococcal agents. Bioorg. Med. Chem., 2013, 21(22), 7194-7201.
[http://dx.doi.org/10.1016/j.bmc.2013.08.043] [PMID: 24080102]
[32]
Martins, C.T.; Lima, M.S.; ElSeoud, O.A. A novel, convenient, quinoline-based merocyanine dye: Probing solvation in pure and mixed solvents and in the interfacial region of an anionic micelle. J. Phys. Org. Chem., 2005, 18, 1072-1085.
[http://dx.doi.org/10.1002/poc.975]
[33]
Tung, C.H. Fluorescent peptide probes for in vivo diagnostic imaging. Biopolymers, 2004, 76(5), 391-403.
[http://dx.doi.org/10.1002/bip.20139] [PMID: 15389488]
[34]
Kvach, M.V.; Ustinov, A.V.; Stepanova, I.A.; Malakhov, A.D.; Skorobogatyi, M.V.; Shmanai, V.V.; Korshun, V.A. A convenient synthesis of cyanine dyes: Reagents for the labeling of biomolecules. Eur. J. Org. Chem., 2008, 12, 2107-2117.
[http://dx.doi.org/10.1002/ejoc.200701190]
[35]
Park, J.W.; Kim, Y.; Lee, K.J.; Kim, D.J. Novel cyanine dyes with vinylsulfone group for labeling biomolecules. Bioconjug. Chem., 2012, 23(3), 350-362.
[http://dx.doi.org/10.1021/bc200232d] [PMID: 22243689]
[36]
Strekowski, L.; Mason, C.C.; Lee, H.; Patony, G. Synthesis of a functionalized cyanine dye for covalent labeling of biomolecules with a pH sensitive chromophore. Heterocycl. Commun., 2004, 10, 381-382.
[http://dx.doi.org/10.1515/HC.2004.10.6.381]
[37]
El Ouazzani, H.; Dabos-Seignon, S.; Gindre, D.; Iliopoulos, K.; Todorova, M.; Bakalska, R.; Penchev, P.; Sotirov, S.; Kolev, T.; Serbezov, V. Novel styrylquinolinium dye thin films deposited by pulsed laser deposition for nonlinear optical applications. J. Phys. Chem., 2012, 116, 7144-7152.
[38]
Gonçalves, M.S. Fluorescent labeling of biomolecules with organic probes. Chem. Rev., 2009, 109(1), 190-212.
[http://dx.doi.org/10.1021/cr0783840] [PMID: 19105748]
[39]
Pilyugin, G.T.; Gutsulyak, B.M. Advances in the preparation, investigation and use of quinolinium compounds. Russ. Chem. Rev., 1963, 32(3), 167.
[http://dx.doi.org/10.1070/RC1963v032n04ABEH001327]
[40]
Kaur, K.; Jain, M.; Reddy, R.P.; Jain, R. Quinolines and structurally related heterocycles as antimalarials. Eur. J. Med. Chem., 2010, 45(8), 3245-3264.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.011] [PMID: 20466465]
[41]
Solomon, V.R.; Lee, H. Chloroquine and its analogs: A new promise of an old drug for effective and safe cancer therapies. Eur. J. Pharmacol., 2009, 625(1-3), 220-233.
[http://dx.doi.org/10.1016/j.ejphar.2009.06.063] [PMID: 19836374]
[42]
Adams, A.; Caroline, L.; Denny, W.A.; Guss, J.M. Structures of two minor-groove-binding quinolinium quaternary salts complexed with d(CGCGAATTTCGCG)2 AT 1.6 and 1.8 Å resolution. Acta Crystallogr., 2005, D61, 1348-1353.
[43]
Solomon, V.R.; Lee, H. Quinoline as a privileged scaffold in cancer drug discovery. Curr. Med. Chem., 2011, 18(10), 1488-1508.
[http://dx.doi.org/10.2174/092986711795328382] [PMID: 21428893]
[44]
Barchéchath, S.D.; Tawatao, R.I.; Corr, M.; Carson, D.A.; Cottam, H.B. Quinolinium salt as a potent inhibitor of lymphocyte apoptosis. Bioorg. Med. Chem. Lett., 2005, 15(7), 1785-1788.
[http://dx.doi.org/10.1016/j.bmcl.2005.02.047] [PMID: 15780606]
[45]
Nelson, J.M.; Chiller, T.M.; Powers, J.H.; Angulo, F.J. Fluoroquinolone-resistant Campylobacter species and the withdrawal of fluoroquinolones from use in poultry: A public health success story. Clin. Infect. Dis., 2007, 44(7), 977-980.
[http://dx.doi.org/10.1086/512369] [PMID: 17342653]
[46]
Burka, J.M.; Bower, K.S.; Vanroekel, R.C.; Stutzman, R.D.; Kuzmowych, C.P.; Howard, R.S. The effect of fourth-generation fluoroquinolones gatifloxacin and moxifloxacin on epithelial healing following photorefractive keratectomy. Am. J. Ophthalmol., 2005, 140(1), 83-87.
[http://dx.doi.org/10.1016/j.ajo.2005.02.037] [PMID: 15953577]
[47]
Bray, P.G.; Hawley, S.R.; Ward, S.A. 4-Aminoquinoline resistance of Plasmodium falciparum: Insights from the study of amodiaquine uptake. Mol. Pharmacol., 1996, 50(6), 1551-1558.
[PMID: 8967977]
[48]
Sweeney, A.W.; Blackburn, C.R.; Rieckmann, K.H. Short report: The activity of pamaquine, an 8-aminoquinoline drug, against sporozoite-induced infections of Plasmodium vivax (New Guinea strains). Am. J. Trop. Med. Hyg., 2004, 71(2), 187-189.
[http://dx.doi.org/10.4269/ajtmh.2004.71.2.0700187] [PMID: 15306708]
[49]
Kerb, R.; Fux, R.; Mörike, K.; Kremsner, P.G.; Gil, J.P.; Gleiter, C.H.; Schwab, M. Pharmacogenetics of antimalarial drugs: Effect on metabolism and transport. Lancet Infect. Dis., 2009, 9(12), 760-774.
[http://dx.doi.org/10.1016/S1473-3099(09)70320-2] [PMID: 19926036]
[50]
Manoury, P.M.; Dumas, A.P.; Najer, H.; Branceni, D.; Prouteau, M.; Lefevre-Borg, F.M. Synthesis and analgesic activities of some (4-substituted phenyl-1-piperazinyl)alkyl 2-aminobenzoates and 2-aminonicotinates. J. Med. Chem., 1979, 22(5), 554-559.
[http://dx.doi.org/10.1021/jm00191a017] [PMID: 458805]
[51]
Swain, R.; Bapna, J.S. Impairment of exercise tolerance due to broxyquinoline-brobenzoxaldine combination. Hum. Toxicol., 1986, 5(1), 63-64.
[http://dx.doi.org/10.1177/096032718600500115] [PMID: 3081430]
[52]
Tripathy, K.D. Essential of Medical pharmacology, 7th Ed; Jaypee Brothers Medical Publishers, (P) Ltd: New Delhi, 2013, p. 222,223,351,781.
[http://dx.doi.org/10.5005/jp/books/12256]
[53]
Cutrín, P.C.; Nieto, P.E.; Batalla, E.A.; Casal, I.L.; Pérez, B.E.; Lorenzo, Z.V. Toxic hepatitis from cinchophen: Report of 3 cases. Med. Clin. (Barc.), 1991, 97(3), 104-106.
[PMID: 1679861]
[54]
Guliamov, M.G. Experience with the use of new Bulgarian psychotropic drugs. Zh. Nevropatol. Psikhiatr. Im. S. S. Korsakova, 1982, 82(11), 115-122.
[PMID: 6758442]
[55]
Shimura, K.; Kodama, E.; Sakagami, Y.; Matsuzaki, Y.; Watanabe, W.; Yamataka, K.; Watanabe, Y.; Ohata, Y.; Doi, S.; Sato, M.; Kano, M.; Ikeda, S.; Matsuoka, M. Broad antiretroviral activity and resistance profile of the novel human immunodeficiency virus integrase inhibitor elvitegravir (JTK-303/GS-9137). J. Virol., 2008, 82(2), 764-774.
[http://dx.doi.org/10.1128/JVI.01534-07] [PMID: 17977962]
[56]
Waller, D.; Renwick, A.; Hiller, K. Medical Pharmacology and Therapeutics, 5th ed; , 2005, p. 370.
[57]
Kleinknecht, D.; Landais, P.; Goldfarb, B. Analgesic and non-steroidal anti-inflammatory drug-associated acute renal failure: A prospective collaborative study. Clin. Nephrol., 1986, 25(6), 275-281.
[PMID: 2873910]
[58]
Von Frenckell, R.; Ansseau, M.; Bonnet, D. Evaluation of the sedative properties of PK 8165 (pipequaline), a benzodiazepine partial agonist, in normal subjects. Int. Clin. Psychopharmacol., 1986, 1(1), 24-35.
[http://dx.doi.org/10.1097/00004850-198601000-00004] [PMID: 3559150]
[59]
Davis, T.M.; Hung, T.Y.; Sim, I.K.; Karunajeewa, H.A.; Ilett, K.F. Piperaquine: A resurgent antimalarial drug. Drugs, 2005, 65(1), 75-87.
[http://dx.doi.org/10.2165/00003495-200565010-00004] [PMID: 15610051]
[60]
Grossmann, K. Quinclorac belongs to a new class of highly selective auxin herbicides. Weed Sci., 1998, 46(6), 707-716.
[http://dx.doi.org/10.1017/S004317450008975X]
[61]
Houghton, L.A.; Cremonini, F.; Camilleri, M.; Busciglio, I.; Fell, C.; Cox, V.; Alpers, D.H.; Dewit, O.E.; Dukes, G.E.; Gray, E.; Lea, R.; Zinsmeister, A.R.; Whorwell, P.J. Effect of the NK(3) receptor antagonist, talnetant, on rectal sensory function and compliance in healthy humans. Neurogastroenterol. Motil., 2007, 19(9), 732-743.
[http://dx.doi.org/10.1111/j.1365-2982.2007.00934.x] [PMID: 17727393]
[62]
Faravelli, C.; Albanesi, G.; Sessarego, A. Viqualine in resistant depression: A double-blind, placebo-controlled trial. Neuropsychobiology, 1988, 20(2), 78-81.
[http://dx.doi.org/10.1159/000118477] [PMID: 3075725]
[63]
Kharb, R.; Kaur, H. Therapeutic significance of quinoline derivatives as antimicrobial agents. Int. Res. J. Pharm., 2013, 4(3), 63-69.
[http://dx.doi.org/10.7897/2230-8407.04311]
[64]
Willyard, C. The drug-resistant bacteria that pose the greatest health threats. Nature, 2017, 543(7643), 15.
[http://dx.doi.org/10.1038/nature.2017.21550] [PMID: 28252092]
[65]
Levy, S.B.; Marshall, B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med., 2004, 10(12), S122-S129.
[http://dx.doi.org/10.1038/nm1145] [PMID: 15577930]
[66]
Blair, J.M.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol., 2015, 13(1), 42-51.
[http://dx.doi.org/10.1038/nrmicro3380] [PMID: 25435309]
[67]
Nycz, J.E.; Czyz, K.; Szala, M.; Malecki, J.G.; Shaw, G.; Gilmore, B.; Jon, M. Synthesis, spectroscopy and computational studies of some novel π-conjugated vinyl N-alkylated quinolinium salts and their precursor’s. J. Mol. Struct., 2016, 1106, 416-423.
[http://dx.doi.org/10.1016/j.molstruc.2015.11.011]
[68]
Bazin, M.; Kuhn, C. Use of quinolinium salts in parallel synthesis for the preparation of 4-amino-2-alkyl-1,2,3,4-tetrahydroquinoline. J. Comb. Chem., 2005, 7(2), 302-308.
[http://dx.doi.org/10.1021/cc0498534] [PMID: 15762760]
[69]
Marek, J.; Stodulka, P.; Soukup, O.; Musilek, K.; Cabal, J.; Kuca, K. Synthesis of the isoquinolinium salts differing in the length of the side alkylating chain. Mil. Med. Sci. Lett., 2012, 81(2), 76-81.
[http://dx.doi.org/10.31482/mmsl.2012.010]
[70]
Geddes, C.D.; Apperson, K.; Birch, D.J.S. New flourescent quinolinium dyes- applications in nanometre particle sizing. Dyes Pigments, 2000, 44, 69-74.
[http://dx.doi.org/10.1016/S0143-7208(99)00079-0]
[71]
Zhang, X.; Jiang, X.; Li, Y.; Lin, Z.; Zhang, G.; Wu, Y. Synthesis, crystal structures and properties of new quinolinium derivatives. Chem. Phys. Lett., 2015, 641, 141-145.
[http://dx.doi.org/10.1016/j.cplett.2015.10.062]
[72]
Winstead, A.; Oyaghire, S. 1-(6-Ethoxy-6-oxohexyl)-4-methylquinolinium iodide. Molbank, 2010, 2010(1), 37-39.
[73]
Shchepina, N.E.; Avrorin, V.V.; Badun, G.A.; Lewis, S.B.; Shurov, S.N. New way of direct nitrogen atom phenylation in quinoline derivatives. ISRN Org. Chem., 2012, 2012, 526867-526870.
[http://dx.doi.org/10.5402/2012/526867] [PMID: 24052846]
[74]
Paira, R.; Paira, P.; Maity, A.; Mondal, S.; Hazra, A.; Sahu, K.B.; Naskar, S.; Saha, P.; Banerjee, M.; Mondal, N.B. Amberlite IRA 402 (OH): An efficient mediator for the exclusive synthesis of fused tricyclic oxaza quinolinium salts. Tetrahedron Lett., 2010, 51(24), 3200-3204.
[http://dx.doi.org/10.1016/j.tetlet.2010.04.034]
[75]
Chen, W.C.; Gandeepan, P.; Tsai, C.H.; Luo, C.Z.; Rajamalli, P.; Cheng, C.H. A concise synthesis of quinolinium and biquinolinium salts and biquinolines from benzylic azides and alkenes promoted by copper (II)species. RSC Advances, 2016, 6(68), 63390-63397.
[http://dx.doi.org/10.1039/C6RA11840B]
[76]
Smeyanov, A.; Adams, J.; Hubner, E.G.; Schmidt, A. Mesomeric betaines constructed of quinolinium cations and carboxylate anions separated by thiophene-ethynyl spacers as fluorescent dipoles. Tetrahedron, 2017, 73, 3106-3111.
[http://dx.doi.org/10.1016/j.tet.2017.04.031]
[77]
Lee, S.H.; Yoo, B.W.; Yun, H.; Jazbinsek, M.; Kwon, O.P. Organic styryl quinolinium crystal with aromatic anion bearing electron-rich vinyl group. J. Mol. Struct., 2015, 1100, 359-365.
[http://dx.doi.org/10.1016/j.molstruc.2015.07.071]
[78]
Zieba, A.; Suwinska, K. 1-Alkyl-3-ethylthio-4-(N-benzoyl-N-phenylamino) quinolinium salts - Synthesis and Transformations. Heterocycles, 2008, 75(11), 2649-2657.
[http://dx.doi.org/10.3987/COM-08-11421]
[79]
Soukup, O.; Dolezal, R.; Malinak, D.; Marek, J.; Salajkova, S.; Pasdiorova, M.; Honegr, J.; Korabecny, J.; Nachtigal, P.; Nachon, F.; Jun, D.; Kuca, K. Synthesis, antimicrobial evaluation and molecular modeling of 5-hydroxyisoquinolinium salt series; the effect of the hydroxyl moiety. Bioorg. Med. Chem., 2016, 24(4), 841-848.
[http://dx.doi.org/10.1016/j.bmc.2016.01.006] [PMID: 26774252]
[80]
Komloova, M.; Musilek, K.; Horova, A.; Holas, O.; Dohnal, V.; Gunn-Moore, F.; Kuca, K. Preparation, in vitro screening and molecular modelling of symmetrical bis-quinolinium cholinesterase inhibitors--implications for early myasthenia gravis treatment. Bioorg. Med. Chem. Lett., 2011, 21(8), 2505-2509.
[http://dx.doi.org/10.1016/j.bmcl.2011.02.047] [PMID: 21397501]
[81]
Chan, S.C.A; Chan, S.H.; Tang, C.O.J.; Kok, H.L.S.; Lam, K.H.; Roberto, G.F.; Chui, C.H.; Cheung, F.; Cheng, C.H. Method of making and administering quinoline derivatives as anti-canceragents. WO2009024095/US20090054482, 2009.
[82]
Chan, S.H.; Chui, C.H.; Chan, S.W.; Kok, S.H.L.; Chan, D.; Tsoi, M.Y.T.; Leung, P.H.M.; Lam, A.K.Y.; Chan, A.S.C.; Lam, K.H.; Tang, J.C.O. Synthesis of 8-hydroxyquinoline derivatives as novel antitumor agents. ACS Med. Chem. Lett., 2012, 4(2), 170-174.
[http://dx.doi.org/10.1021/ml300238z] [PMID: 24900641]
[83]
Lam, K.H.; Lee, K.K.; Gambari, R.; Kok, S.H.; Kok, T.W.; Chan, A.S.; Bian, Z.X.; Wong, W.Y.; Wong, R.S.; Lau, F.Y.; Tong, S.W.; Chan, K.W.; Cheng, C.H.; Chui, C.H.; Tang, J.C. Anti-tumour and pharmacokinetics study of 2-Formyl-8-hydroxy-quinolinium chloride as Galipea longiflora alkaloid analogue. Phytomedicine, 2014, 21(6), 877-882.
[http://dx.doi.org/10.1016/j.phymed.2014.02.005] [PMID: 24680618]
[84]
Boateng, C.A.; Eyunni, S.V.K.; Zhu, X.Y.; Etukala, J.R.; Bricker, B.A.; Ashfaq, M.K.; Jacob, M.R.; Khan, S.I.; Walker, L.A.; Ablordeppey, S.Y. Benzothieno[3,2-b]quinolinium and 3-(phenylthio)quinolinium compounds: Synthesis and evaluation against opportunistic fungal pathogens. Bioorg. Med. Chem., 2011, 19(1), 458-470.
[http://dx.doi.org/10.1016/j.bmc.2010.11.008] [PMID: 21134759]
[85]
Boateng, C.A.; Zhu, X.Y.; Jacob, M.R.; Khan, S.I.; Walker, L.A.; Ablordeppey, S.Y. Optimization of 3-(phenylthio)quinolinium compounds against opportunistic fungal pathogens. Eur. J. Med. Chem., 2011, 46(5), 1789-1797.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.034] [PMID: 21402432]
[86]
Chanawanno, K.; Chantrapromma, S.; Anantapong, T.; Kanjana-Opas, A.; Fun, H.K. Synthesis, structure and in vitro antibacterial activities of new hybrid disinfectants quaternary ammonium compounds: Pyridinium and quinolinium stilbene benzenesulfonates. Eur. J. Med. Chem., 2010, 45(9), 4199-4208.
[http://dx.doi.org/10.1016/j.ejmech.2010.06.014] [PMID: 20619939]
[87]
Viscardi, G.; Quagliotto, P.; Barolo, C.; Savarino, P.; Barni, E.; Fisicaro, E. Synthesis and surface and antimicrobial properties of novel cationic surfactants. J. Org. Chem., 2000, 65(24), 8197-8203.
[http://dx.doi.org/10.1021/jo0006425] [PMID: 11101373]
[88]
Srivani, P.; Sastry, G.N. Potential choline kinase inhibitors: A molecular modeling study of bis-quinolinium compounds. J. Mol. Graph. Model., 2009, 27(6), 676-688.
[http://dx.doi.org/10.1016/j.jmgm.2008.10.010] [PMID: 19147382]
[89]
Malinak, D.; Dolezal, R.; Marek, J.; Salajkova, S.; Soukup, O.; Vejsova, M.; Korabecny, J.; Honegr, J.; Penhaker, M.; Musilek, K.; Kuca, K. 6-Hydroxyquinolinium salts differing in the length of alkyl side-chain: Synthesis and antimicrobial activity. Bioorg. Med. Chem. Lett., 2014, 24(22), 5238-5241.
[http://dx.doi.org/10.1016/j.bmcl.2014.09.060] [PMID: 25442318]
[90]
Bharate, S.B.; Thompson, C.M. Antimicrobial, antimalarial, and antileishmanial activities of mono- and bis-quaternary pyridinium compounds. Chem. Biol. Drug Des., 2010, 76(6), 546-551.
[http://dx.doi.org/10.1111/j.1747-0285.2010.01035.x] [PMID: 21040494]
[91]
Alptuzun, V.; Cakiroglu, G.; Limoncu, M.E.; Erac, B.; Hosgor-Limoncu, M.; Erciyas, E. Synthesis and antileishmanial activity of novel pyridinium-hydrazone derivatives. J. Enzyme Inhib. Med. Chem., 2013, 28(5), 960-967.
[http://dx.doi.org/10.3109/14756366.2012.697058] [PMID: 22803671]
[92]
Empel, A.; Kisiel, E.; Wojtyczka, R.D.; Kępa, M.; Idzik, D.; Sochanik, A.; Wąsik, T.J.; Zięba, A. Synthesis and antimicrobial activity of sulfur derivatives of quinoloinium salts. Molecules, 2018, 23(1), 218.
[http://dx.doi.org/10.3390/molecules23010218] [PMID: 29361678]
[93]
Kim, E.; Lee, S.H.; Lee, S.J.; Kwon, O.P.; Yoon, H. New antibacterial-core structures based on styryl quinolinium. Food Sci. Biotechnol., 2017, 26(2), 521-529.
[http://dx.doi.org/10.1007/s10068-017-0072-8] [PMID: 30263574]
[94]
Krause-Heuer, A.M.; Fraser-Spears, R.; Dobrowolski, J.C.; Ashford, M.E.; Wyatt, N.A.; Roberts, M.P.; Gould, G.G.; Cheah, W.C.; Ng, C.K.L.; Bhadbhade, M.; Zhang, B.; Greguric, I.; Wheate, N.J.; Kumar, N.; Koek, W.; Callaghan, P.D.; Daws, L.C.; Fraser, B.H. Evaluation of the antidepressant therapeutic potential of isocyanine and pseudoisocyanine analogues of the organic cation decynium-22. Eur. J. Med. Chem., 2017, 137, 476-487.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.011] [PMID: 28624702]
[95]
Scott, T. Plant regulation and World agriculture; Plenum press, A division of plenum publishing corporation: 227 West, 17th street, New York, 1978, pp. 243-244.
[96]
Tanzer, J.M.; Slee, A.M.; Kamay, B.; Scheer, E.R. In vitro evaluation of seven cationic detergents as antiplaque agents. Antimicrob. Agents Chemother., 1979, 15(3), 408-414.
[http://dx.doi.org/10.1128/AAC.15.3.408] [PMID: 464568]
[97]
Madaan, P.; Tyagi, V.K. Quaternary pyridinium salts: A review. J. Oleo Sci., 2008, 57(4), 197-215.
[http://dx.doi.org/10.5650/jos.57.197] [PMID: 18332584]
[98]
Wysocki, A.J.; Taber, D. Cyclical alkylammonium compounds in Cationic surfactants, Surfactant Science series; Jungermann, E., Ed.; Marcel Dekker: New York, 1970, pp. 74-97.
[99]
Marek, J.; Buchta, V.; Soukup, O.; Stodulka, P.; Cabal, J.; Ghosh, K.K.; Musilek, K.; Kuca, K. Preparation of quinolinium salts differing in the length of the alkyl side chain. Molecules, 2012, 17(6), 6386-6394.
[http://dx.doi.org/10.3390/molecules17066386] [PMID: 22634846]
[100]
Collier, H.O.J.; Potter, M.D.; Taylor, E.P. Antifungal activities of bisisoquinolinium and bisquinolinium salts. Br. J. Pharmacol. Chemother., 1955, 10(3), 343-348.
[http://dx.doi.org/10.1111/j.1476-5381.1955.tb00881.x] [PMID: 13269712]
[101]
Zieba, A.; Wojtyczka, R.D.; Idzik, D.; Kepa, M. Synthesis and in vitro antimicrobial activity of 1-methyl-3-sulfonylthio-4-aminoquinolinium chlorides. Acta Pol. Pharm., 2013, 70(1), 163-166.
[PMID: 23610972]
[102]
Sun, N.; Du, R.L.; Zheng, Y.Y.; Guo, Q.; Cai, S.Y.; Liu, Z.H.; Fang, Z.Y.; Yuan, W.C.; Liu, T.; Li, X.M.; Lu, Y.J.; Wong, K.Y. Antibacterial activity of 3-methylbenzo[d]thiazol-methylquinolinium derivatives and study of their action mechanism. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 879-889.
[http://dx.doi.org/10.1080/14756366.2018.1465055] [PMID: 29722581]
[103]
Sun, N.; Du, R.L.; Zheng, Y.Y.; Huang, B.H.; Guo, Q.; Zhang, R.F.; Wong, K.Y.; Lu, Y.J. Antibacterial activity of N-methylbenzofuro[3,2-b]quinoline and N-methylbenzoindolo[3,2-b]-quinoline derivatives and study of their mode of action. Eur. J. Med. Chem., 2017, 135, 1-11.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.018] [PMID: 28426995]
[104]
Lu, Y.J.; Wang, Z.Y.; Hu, D.P.; Deng, Q.; Huang, B.H.; Fang, Y.X. Benzothiazole-substituted benzofuroquinolinium dyes as new fluorescent probes for G-quadruplex DNA. Dyes Pigm., 2015, 122, 94-102.
[http://dx.doi.org/10.1016/j.dyepig.2015.06.018]
[105]
Zheng, Y.Y.; Du, R.L.; Cai, S.Y.; Liu, Z.H.; Fang, Z.Y.; Liu, T.; So, L.Y.; Lu, Y.J.; Sun, N.; Wong, K.Y. Study of Benzofuroquinolinium derivatives as a new class of potent antibacterial agent and the mode of inhibition targeting FtsZ. Front. Microbiol., 2018, 9, 1937.
[http://dx.doi.org/10.3389/fmicb.2018.01937] [PMID: 30174667]
[106]
Vélez, C.; Cox, O.; Rosado-Berrios, C.A.; Molina, D.; Arroyo, L.; Carro, S.; Filikov, A.; Kumar, V.; Malhotra, S.V.; Cordero, M.; Zayas, B. Novel Nitrobenzazolo [3,2-a] quinolinium salts induce cell deadth through a mechanism involving DNA damage, cell cycle changes and mitochondrial permeabilization. Open J. Apoptosis, 2013, 2(2), 13-22.
[http://dx.doi.org/10.4236/ojapo.2013.22002] [PMID: 25243104]
[107]
Cox, O.; Jackson, H.; Vargas, V.A.; Báez, A.; Colón, J.I.; González, B.C.; de León, M. Synthesis and biological activity of benzothiazolo- and benzoxazolo[3,2-a] quinolinium salts. J. Med. Chem., 1982, 25(11), 1378-1381.
[http://dx.doi.org/10.1021/jm00353a020] [PMID: 7143376]
[108]
Cox, O.; Velez, C.; Kumar, V.; Malhotra, S.V.; Rivera, L.A.; Hernandez, W.J.; Martinez, J.R.; Cordero, M.; Zayas, B. Synthesis of and biological study of 7-benzyl-3-aminobenzimidazo[3,2-a] quinolinium chloride (ABQ-48: NSC D-763307) and 7-benzyl-3-nitrobenzimidazo[3,2-a]quinolinium chloride (NBQ48: NSC D-763303). Curr. Bioact. Compd., 2014, 10, 286-291.
[http://dx.doi.org/10.2174/1573407210666141126204355]
[109]
Leleu, S.; Papamicael, C.; Marsais, F.; Dupas, G.; Levacher, V. Preparation of axially chiral quinolinium salts related to NAD+ models: New investigations of these biomimetic models as ‘Chiral amide-transferring agents’. Tetrahedron Asymmetry, 2004, 15(24), 3919-3928.
[http://dx.doi.org/10.1016/j.tetasy.2004.11.004]
[110]
Alegria, A.E.; Flores, W.; Cordones, E.; Rivera, L.; Sanchez-Cruz, P.; Cordero, M.; Cox, O. Reductive activation and thiol reactivity of benzazolo[3,2-a] quinolinium salts. Toxicology, 2004, 199(2-3), 87-96.
[http://dx.doi.org/10.1016/j.tox.2003.11.017] [PMID: 15147783]
[111]
Lava, K.; Evrard, Y.; Hecke, K.V.; Meervelt, L.C.; Binnemans, K. Quinolinium and isoquinolinium ionic liquid crystals. RSC. Adv., 2012, 2, 8061-8070.
[112]
Mourya, P.; Singh, P.; Tewari, A.K.; Rastogi, R.B.; Singh, M.M. Relationship between structure and inhibition behaviour of quinolinium salts for mild steel corrosion: Experimental and theoretical approach. Corros. Sci., 2015, 95, 71-87.
[http://dx.doi.org/10.1016/j.corsci.2015.02.034]
[113]
Swinburne, A.N.; Paterson, M.J.; Beeby, A.; Steed, J.W. A quinolinium-derived turn-off fluorescent anion sensor. Org. Biomol. Chem., 2010, 8(5), 1010-1016.
[http://dx.doi.org/10.1039/b919821k] [PMID: 20165790]
[114]
Quagliotto, P.; Barbero, N.; Barolo, C.; Artuso, E.; Compari, C.; Fisicaro, E.; Viscardi, G. Synthesis and properties of cationic surfactants with tuned hydrophylicity. J. Colloid Interface Sci., 2009, 340(2), 269-275.
[http://dx.doi.org/10.1016/j.jcis.2009.09.009] [PMID: 19815228]
[115]
Thompson, S.J.; Dong, G. Alkylation of rhodium porphyrins using ammonium and quinolinium salts. Organomettalics, 2014, 33, 3757-3767.
[http://dx.doi.org/10.1021/om500438s]
[116]
Walker, L.M. Metal corrosion inhibiting compositions, in: European Patent 0593230A1. 1994.
[117]
Schmitt, G.; Bedbur, K. Investigations on structural and electronic effects in acid inhibitors by AC impedance. Mater Corros., 1985, 36, 273-278.
[http://dx.doi.org/10.1002/maco.19850360603]
[118]
Sitz, C.; Frenier, W.; Vallejo, C. Acid Corrosion Inhibitors with Improved Environmental Profiles. In: SPE 155966. Society of Petroleum Engineers International Conference and Exhibition on Oilfield Corrosion; Aberdeen, UK, May 28-29, 2012.
[http://dx.doi.org/10.2118/155966-MS]
[119]
Yang, Z.; Zhan, F.; Pan, Y. LYu, Z.; Han, C.; Hu, Y.; Ding, P.; Gao, T.; Zhou, X.; Jiang, Y. Structure of a novel benzyl quinolinium chloride derivative and its effective corrosion inhibition in 15 wt.% hydrochloric acid. Corros. Sci., 2015, 99, 281-294.http://doi:10.1016/j.corsci.2015.07.023
[120]
Wang, Y.; Yang, Z.; Zhan, F. LYu, Z.; Han, C.; Wang, X.; Chen, W.; Ding, M.; Wang, R.; Jiang, Y. Indolizine quaternary ammonium salt inhibitors: A reinvestigation of an old fashioned strong acid corrosion inhibitor phenacyl quinolinium bromide and its indolizine derivative. New J. Chem., 2018, 42(15), 12979-12989.
[http://dx.doi.org/10.1039/C8NJ02505C]
[121]
Sawicka, M.J.; Wroblewska, E.K. The application of 7H-indolo[1,2-a]quinolinium merocyanine as a new water sensor in organic solvents. Chem. Pap., 2018, 72(3), 741-752.
[http://dx.doi.org/10.1007/s11696-017-0328-z] [PMID: 29568153]
[122]
Shchepina, N.; Avrorin, V.; Badun, G.; Alexandrova, G.; Agafonova, I.; Popova, N. Quinolinium structures as labelled biomarkers. Open J. Synt. Theory App., 2014, 3, 21-26.