Endophytic Fungi - An Untapped Source of Potential Antioxidants

Page: [944 - 964] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Background: Antioxidants are the substances that interact inside and outside of a biological system against the damaging effects of highly reactive free radicals produced during metabolism. Among various natural alternative sources of bioactive metabolites, endophytic fungi have emerged as a significant reservoir of potent antioxidant compounds. These scantly explored micro-organisms are prolific producers of novel compounds and have the capability to produce metabolites that are exclusively isolated from Plantae. A wide array of compounds like nucleobases, polyketides, terpenoids, flavonoids, coumarins, xanthones, semiquinones, peptides, and phenolic acids have been identified as natural antioxidants produced by these micro-organisms.

Methods: A detailed review of the literature published recently was undertaken using bibliographic database like Sci-finder and Google scholar. Questions to be reviewed and criteria for selection as a part of the study were fixed. The key features like information on the structure of isolated metabolites and antioxidant activities were summarised after a critical examination. A skeleton was established which gives insight into the type of novel chemical moieties which can be explored as a future antioxidant (s).

Results: The review substantially covers the recently discovered compounds, in the period 2013 – 2018, having potent antioxidant activity, isolated from endophytic fungi colonizing diverse plant types such as terrestrial plants, mangrove plants and marine algae. Among the 96 compounds discussed here, thirtynine are from the first report of their occurrence. The present study reports 96 compounds obtained from 34 endophytic fungi out of which 15 fungi belonging to 13 genera of Ascomycetes produced 44 compounds, 14 fungi belonging to 5 genera of hyphomycetes yielded 33 compounds and 6 fungi belonging to 2 genera of Coelomycetes yielded 19 compounds.

The antioxidant potency of these compounds against different free radicals is briefly described and some details such as host organisms, plant sources, place of collection and the antioxidant properties of these compounds are tabulated in this review.

Conclusion: Some of these free radical scavengers have shown wide applications in the food and pharmaceutical industry as potential food preservatives, nutraceuticals, antibacterial, anticancer and antifungal agents. This review aims at highlighting some of the novel compounds isolated recently from endophytic fungi, and their applications as potential antioxidant candidates.

Keywords: Antioxidants, endophytic fungi, food additives, nutraceuticals, terrestrial plants, biomolecules.

Graphical Abstract

[1]
Sarkar, A.; Ghosh, U. Natural antioxidants - The key to safe and sustainable life. Int. J. Latest Trends Eng. Technol., 2016, 6, 460-466.
[2]
Shahidi, F.; Zhong, Y. Novel antioxidants in food quality preservation and health promotion. Eur. J. Lipid Sci. Technol., 2010, 112, 930-940.
[http://dx.doi.org/10.1002/ejlt.201000044]
[3]
Peterson, R.L.; Massicotte, H.B. Exploring structural definitions of mycorrhizas, with emphasis on nutrient-exchange interfaces. Can. J. Bot., 2004, 82, 1074-1088.
[http://dx.doi.org/10.1139/b04-071]
[4]
Gunatilaka, A.A. Natural products from plant-associated microorganisms: Distribution, structural diversity, bioactivity, and implications of their occurrence. J. Nat. Prod., 2006, 69(3), 509-526.
[http://dx.doi.org/10.1021/np058128n]
[5]
Cacciatore, I.; Cornacchia, C.; Baldassarre, L.; Fornasari, E.; Mollica, A.; Stefanucci, A.; Pinnen, F. GPE and GPE analogues as promising neuroprotective agents. Mini Rev. Med. Chem., 2012, 12(1), 13-23.
[http://dx.doi.org/10.2174/138955712798868995]
[6]
Deshmukh, S.; Gupta, M.; Prakash, V.; Saxena, S. Endophytic aungi: a source of potential antifungal compounds. J. Fungi (Basel), 2018, 4(3), 77.
[http://dx.doi.org/10.3390/jof4030077]
[7]
Zhang, W.; Krohn, K.; Draeger, S.; Schulz, B. Bioactive isocoumarins isolated from the endophytic fungus Microdochium bolleyi. J. Nat. Prod., 2008, 71(6), 1078-1081.
[http://dx.doi.org/10.1021/np800095g]
[8]
Li, J.Y.; Strobel, G.; Harper, J.; Lobkovsky, E.; Clardy, J. Cryptocin, a potent tetramic acid antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Org. Lett., 2000, 2(6), 767-770.
[http://dx.doi.org/10.1021/ol000008d]
[9]
Strobel, G.; Yang, X.; Sears, J.; Kramer, R.; Sidhu, R.S.; Hess, W.M. Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology, 1996, 142(Pt 2), 435-440.
[http://dx.doi.org/10.1099/13500872-142-2-435]
[10]
Verekar, S.A.; Mishra, P.D.; Sreekumar, E.S.; Deshmukh, S.K.; Fiebig, H.H.; Kelter, G.; Maier, A. Anticancer activity of new depsipeptide compound isolated from an endophytic fungus. J. Antibiot. (Tokyo), 2014, 67(10), 697-701.
[http://dx.doi.org/10.1038/ja.2014.58]
[11]
Kusari, S.; Verma, V.C.; Lamshoeft, M.; Spiteller, M. An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J. Microbiol. Biotechnol., 2012, 28(3), 1287-1294.
[http://dx.doi.org/10.1007/s11274-011-0876-2]
[12]
Saxena, S.; Chibber, M.; Singh, I.P. Fungal bioactive compounds in pharmaceutical research and development. Curr. Bioact. Compd., 2019, 15(2), 211-231.
[http://dx.doi.org/10.2174/1573407214666180622104720]
[13]
Lin, Z.; Wen, J.; Zhu, T.; Fang, Y.; Gu, Q.; Zhu, W. Chrysogenamide A from an endophytic fungus associated with Cistanche deserticola and its neuroprotective effect on SH-SY5Y cells. J. Antibiot. (Tokyo), 2008, 61(2), 81-85.
[http://dx.doi.org/10.1038/ja.2008.114]
[14]
Lee, J.C.; Lobkovsky, E.; Pliam, N.B.; Strobel, G.; Clardy, J. 1995.
[15]
Deshmukh, S.K.; Mishra, P.D.; Kulkarni-Almeida, A.; Verekar, S.; Sahoo, M.R.; Periyasamy, G.; Goswami, H.; Khanna, A.; Balakrishnan, A.; Vishwakarma, R. Anti-inflammatory and anticancer activity of ergoflavin isolated from an endophytic fungus. Chem. Biodivers., 2009, 6(5), 784-789.
[http://dx.doi.org/10.1002/cbdv.200800103]
[16]
Harper, J.K.; Arif, A.M.; Ford, E.J.; Strobel, G.A.; Porco, J.A., Jr; Tomer, D.P.; Oneill, K.L.; Heider, E.M.; Grant, D.M. Pestacin: A 1,3-dihydro isobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron, 2003, 59, 2471-2476.
[http://dx.doi.org/10.1016/S0040-4020(03)00255-2]
[17]
Song, Y.C.; Huang, W.Y.; Sun, C.; Wang, F.W.; Tan, R.X. Characterization of graphislactone A as the antioxidant and free radical-scavenging substance from the culture of Cephalosporium sp. IFB-E001, an endophytic fungus in Trachelospermum jasminoides. Biol. Pharm. Bull., 2005, 28(3), 506-509.
[http://dx.doi.org/10.1248/bpb.28.506]
[18]
Tao, M.H. Chen. Y.; Wei, X. Y.; Tan, J. W.; Zhang, W. M. Chemical Constituents of the Endophytic Fungus Phomopsis sp. A240 Isolated from Taxus chinensis var. mairei. Helv. Chim. Acta, 2014, 97, 426-430.
[http://dx.doi.org/10.1002/hlca.201300367]
[19]
Chapla, V.M.; Zeraik, M.L.; Ximenes, V.F.; Zanardi, L.M.; Lopes, M.N.; Cavalheiro, A.J.; Silva, D.H.; Young, M.C.; Fonseca, L.M.; Bolzani, V.S.; Araújo, A.R. Bioactive secondary metabolites from Phomopsis sp., an endophytic fungus from Senna spectabilis. Molecules, 2014, 19(5), 6597-6608.
[http://dx.doi.org/10.3390/molecules19056597]
[20]
Tianpanich, K.; Prachya, S.; Wiyakrutta, S.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. Radical scavenging and antioxidant activities of isocoumarins and a phthalide from the endophytic fungus Colletotrichum sp. J. Nat. Prod., 2011, 74(1), 79-81.
[http://dx.doi.org/10.1021/np1003752]
[21]
Li, W.; Yang, X.; Yang, Y.; Duang, R.; Chen, G.; Li, X.; Li, Q.; Qin, S.; Li, S.; Zhao, L.; Ding, Z. Anti-phytopathogen, multi-target acetylcholinesterase inhibitory and antioxidant activities of metabolites from endophytic Chaetomium globosum. Nat. Prod. Res., 2016, 30(22), 2616-2619.
[http://dx.doi.org/10.1080/14786419.2015.1129328]
[22]
Li, H.; Liao, Z.B.; Tang, D.; Han, W.B. Zhang. Q., Gao, J. M. Polyketides from two Chaetomium species and their biological functions. J. Antibiot. (Tokyo), 2018, 71, 671-681.
[http://dx.doi.org/10.1038/s41429-018-0047-x]
[23]
Hewage, R.T.; Aree, T.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. One Strain-Many Compounds (OSMAC) method for production of polyketides, azaphilones, and an isochromanone using the endophytic fungus Dothideomycete sp. Phytochemistry, 2014, 108, 87-94.
[http://dx.doi.org/10.1016/j.phytochem.2014.09.013]
[24]
Jinu, M.V.; Ginni, C.K.; Jayabaskaran, C. In vitro antioxidant activity of cholestanol glucoside from an endophytic fungus Lasiodiplodia theobromae isolated from Saraca asoca. J. Chem. Pharm. Res., 2015, 7, 952-962.
[25]
Xiao, J.; Zhang, Q.; Gao, Y.Q.; Tang, J.J.; Zhang, A.L.; Gao, J.M. Secondary metabolites from the endophytic Botryosphaeria dothidea of Melia azedarach and their antifungal, antibacterial, antioxidant, and cytotoxic activities. J. Agric. Food Chem., 2014, 62(16), 3584-3590.
[http://dx.doi.org/10.1021/jf500054f]
[26]
Dzoyem, J.P.; Melong, R.; Tsamo, A.T.; Maffo, T.; Kapche, D.G.; Ngadjui, B.T.; McGaw, L.J.; Eloff, J.N. Cytotoxicity, antioxidant and antibacterial activity of four compounds produced by an endophytic fungus Epicoccum nigrum associated with Entada abyssinica. Rev. Bras. Farmacogn., 2017, 27, 251-25.
[http://dx.doi.org/10.1016/j.bjp.2016.08.011]
[27]
Gaur, R.; Tiwari, S.; Jakhmola, A.; Thakur, J.P.; Verma, R.K.; Pandey, R.; Bhakuni, R.S. Novel biotransformation processes of artemisinic acid to their hydroxylated derivatives 3β-hydroxyartemisinic acid and 3β, 15-dihydroxyartemisinic by fungus Trichothecium roseum CIMAPN1and their biological evaluation. J. Mol. Catal., B Enzym., 2014, 106, 46-55.
[http://dx.doi.org/10.1016/j.molcatb.2014.04.008]
[28]
Prihantini, A.I.; Tachibana, S. Antioxidant compounds produced by Pseudocercospora sp. ESL 02, an endophytic fungus isolated from Elaeocarpus sylvestris. Asian Pac. J. Trop. Biomed., 2017, 7, 110-115.
[http://dx.doi.org/10.1016/j.apjtb.2016.11.020]
[29]
Alurappa, R.; Bojegowda, M.R.M.; Kumar, V.; Mallesh, N.K.; Chowdappa, S. Characterisation and bioactivity of oosporein produced by endophytic fungus Cochliobolus kusanoi isolated from Nerium oleander L. Nat. Prod. Res., 2014, 28(23), 2217-2220.
[http://dx.doi.org/10.1080/14786419.2014.924933]
[30]
Li, T.; Wang, X.; Luo, J.; Yang, M.; Kong, L. Antioxidant sordariol dimers from Sordaria macrospora and the absolute configuration determinations of their two simultaneous linear 1,2-diols. Tetrahedron Lett., 2016, 57, 2754-2757.
[http://dx.doi.org/10.1016/j.tetlet.2016.05.014]
[31]
Gubiani, J.R.; Zeraik, M.L.; Oliveira, C.M.; Ximenes, V.F.; Nogueira, C.R.; Fonseca, L.M.; Silva, D.H.; Bolzani, V.S.; Araujo, A.R. Biologically active eremophilane-type sesquiterpenes from Camarops sp., an endophytic fungus isolated from Alibertia macrophylla. J. Nat. Prod., 2014, 77(3), 668-672.
[http://dx.doi.org/10.1021/np400825s]
[32]
Guo, J.; Ran, H.; Zeng, J.; Liu, D.; Xin, Z. Tafuketide, a phylogeny-guided discovery of a new polyketide from Talaromyces funiculosus Salicorn 58. Appl. Microbiol. Biotechnol., 2016, 100(12), 5323-5338.
[http://dx.doi.org/10.1007/s00253-016-7311-4]
[33]
Zhao, J.; Ma, D.; Luo, M.; Wang, W.; Zhao, C.; Zu, Y.G.; Fu, Y.; Wink, M. In vitro antioxidant activities and antioxidant enzyme activities in HepG2 cells and main active compounds of endophytic fungus from pigeon pea. Food Res. Int., 2014, 56, 243-251.
[http://dx.doi.org/10.1016/j.foodres.2013.12.028]
[34]
Ma, Y.M.; Ma, C.C.; Li, T.; Wang, J. A new furan derivative from an endophytic Aspergillus flavus of Cephalotaxus fortunei. Nat. Prod. Res., 2016, 30(1), 79-84.
[http://dx.doi.org/10.1080/14786419.2015.1038262]
[35]
Goutam, J.; Sharma, G.; Tiwari, V.K.; Mishra, A.; Kharwar, R.N.; Ramaraj, V.; Koch, B. Isolation and characterization of “terrein” an antimicrobial and antitumor compound from endophytic fungus Aspergillus terreus (JAS-2) associated from Achyranthus aspera Varanasi, India. Front. Microbiol., 2017, 8, 1334.
[http://dx.doi.org/10.3389/fmicb.2017.01334]
[36]
Wang, H.; Eze, P.M.; Höfert, S-P.; Janiak, C.; Hartmann, R.; Okoye, F.B.C.; Esimone, C.O.; Orfali, R.S.; Dai, H.; Liu, Z.; Proksch, P. Substituted l-tryptophan-l-phenyllactic acid conjugates produced by an endophytic fungus Aspergillus aculeatus using an OSMAC approach. RSC Advances, 2018, 8, 7863-7872.
[http://dx.doi.org/10.1039/C8RA00200B]
[37]
Yuan, Y.; Tian, J.M.; Xiao, J.; Shao, Q.; Gao, J.M. Bioactive metabolites isolated from Penicillium sp. YY-20, the endophytic fungus from Ginkgo biloba. Nat. Prod. Res., 2014, 28(4), 278-281.
[http://dx.doi.org/10.1080/14786419.2013.850686]
[38]
Luo, Y.; Chen, W.; Wen, L.; Zhou, L.; Kang, X.; Chen, G. A new hexanedioic acid analogue from the endophytic fungus Penicillium sp. OC-4 of Orchidantha chinensis. Chem. Nat. Compd., 2017, 53, 834-838.
[http://dx.doi.org/10.1007/s10600-017-2135-8]
[39]
Tiwari, S.; Singh, S.; Pandey, P.; Saikia, S.K.; Negi, A.S.; Gupta, S.K.; Pandey, R.; Banerjee, S. Isolation, structure determination, and antiaging effects of 2,3-pentanediol from endophytic fungus of Curcuma amada and docking studies. Protoplasma, 2014, 251(5), 1089-1098.
[http://dx.doi.org/10.1007/s00709-014-0617-0]
[40]
Tian, J.; Fu, L.; Zhang, Z.; Dong, X.; Xu, D.; Mao, Z.; Liu, Y.; Lai, D.; Zhou, L. Dibenzo-α-pyrones from the endophytic fungus Alternaria sp. Samif01: Isolation, structure elucidation, and their antibacterial and antioxidant activities. Nat. Prod. Res., 2017, 31(4), 387-396.
[http://dx.doi.org/10.1080/14786419.2016.1205052]
[41]
Zhang, J.C.; Chen, G.Y.; Li, X.Z.; Hu, M.; Wang, B.Y.; Ruan, B.H.; Zhou, H.; Zhao, L.X.; Zhou, J.; Ding, Z.T.; Yang, Y.B. Phytotoxic, antibacterial, and antioxidant activities of mycotoxins and other metabolites from Trichoderma sp. Nat. Prod. Res., 2017, 31(23), 2745-2752.
[http://dx.doi.org/10.1080/14786419.2017.1295235]
[42]
Debbab, A.; Aly, A.H.; Proksch, P. Mangrove derived fungal endophytes – A chemical and biological perception. Fungal Divers., 2013, 61, 1-27.
[http://dx.doi.org/10.1007/s13225-013-0243-8]
[43]
Cai, R.; Chen, S.; Liu, Z.; Tan, C.; Huang, X.; She, Z. A new α-pyrone from the mangrove endophytic fungus Phomopsis sp. HNY29-2B. Nat. Prod. Res., 2017, 31(2), 124-130.
[http://dx.doi.org/10.1080/14786419.2016.1214833]
[44]
Zhang, W.; Xu, L.; Yang, L.; Huang, Y.; Li, S.; Shen, Y. Phomopsidone A, a novel depsidone metabolite from the mangrove endophytic fungus Phomopsis sp. A123. Fitoterapia, 2014, 96, 146-151.
[http://dx.doi.org/10.1016/j.fitote.2014.05.001]
[45]
Chen, H.; Huang, M.; Li, X.; Liu, L.; Chen, B.; Wang, J.; Lin, Y. Phochrodines A-D, first naturally occurring new chromenopyridines from mangrove entophytic fungus Phomopsis sp. 33. Fitoterapia, 2018, 124, 103-107.
[http://dx.doi.org/10.1016/j.fitote.2017.10.013]
[46]
Tan, C.; Liu, Z.; Chen, S.; Huang, X.; Cui, H.; Long, Y.; Lu, Y.; She, Z. Antioxidative polyketones from the mangrove-derived fungus Ascomycota sp. SK2YWS-L. Sci. Rep., 2016, 6, 36609.
[http://dx.doi.org/10.1038/srep36609]
[47]
Xiao, Z.; Chen, S.; Cai, R.; Lin, S.; Hong, K.; She, Z. New furoisocoumarins and isocoumarins from the mangrove endophytic fungus Aspergillus sp. 085242. Beilstein J. Org. Chem., 2016, 12, 2077-2085.
[http://dx.doi.org/10.3762/bjoc.12.196]
[48]
Zhang, P.; Meng, L-H.; Mándi, A.; Li, X.M.; Kurtan, T.; Wang, B.G. Structure, absolute configuration, and conformational study of resorcylic acid derivatives and related congeners from the fungus Penicillium brocae. RSC Advances, 2015, 5, 39870-39877.
[http://dx.doi.org/10.1039/C5RA02203G]
[49]
Wang, X.; Wang, H.; Liu, T.; Xin, Z.A. PKS I gene-based screening approach for the discovery of a new polyketide from Penicillium citrinum Salicorn 46. Appl. Microbiol. Biotechnol., 2014, 98(11), 4875-4885.
[http://dx.doi.org/10.1007/s00253-014-5572-3]
[50]
Wang, J.; Ding, W.; Wang, R.; Du, Y.; Liu, H.; Kong, X.; Li, C. Identification and bioactivity of compounds from the mangrove endophytic fungus Alternaria sp. Mar. Drugs, 2015, 13(7), 4492-4504.
[http://dx.doi.org/10.3390/md13074492]
[51]
Wang, J.; Cox, D.G.; Ding, W.; Huang, G.; Lin, Y.; Li, C. Three new resveratrol derivatives from the mangrove endophytic fungus Alternaria sp. Mar. Drugs, 2014, 12(5), 2840-2850.
[http://dx.doi.org/10.3390/md12052840]
[52]
Rateb, M.E.; Ebel, R. Secondary metabolites of fungi from marine habitats. Nat. Prod. Rep., 2011, 28(2), 290-344.
[http://dx.doi.org/10.1039/c0np00061b]
[53]
Li, H.L.; Li, X.M.; Li, X.; Wang, C.Y.; Liu, H.; Kassack, M.U.; Meng, L.H.; Wang, B.G. Antioxidant hydroanthraquinones from the marine algal-derived endophytic fungus Talaromyces islandicus EN-501. J. Nat. Prod., 2017, 80(1), 162-168.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00797]
[54]
Du, F.Y.; Li, X.; Li, X.M.; Zhu, L.W.; Wang, B.G. Indolediketopiperazine alkaloids from Eurotium cristatum EN-220, an endophytic fungus isolated from the marine alga Sargassum thunbergii. Mar. Drugs, 2017, 15(2), 15.
[http://dx.doi.org/10.3390/md15020024]
[55]
Li, X.; Li, X.M.; Xu, G.M.; Li, C.S.; Wang, B.G. Antioxidant metabolites from marine alga-derived fungus Aspergillus wentii EN-48. Phytochem. Lett., 2014, 7, 120-123.
[http://dx.doi.org/10.1016/j.phytol.2013.11.008]
[56]
Scherlach, K.; Hertweck, C. Triggering cryptic natural product biosynthesis in microorganisms. Org. Biomol. Chem., 2009, 7(9), 1753-1760.
[http://dx.doi.org/10.1039/b821578b]
[57]
Bode, H.B.; Bethe, B.; Höfs, R.; Zeeck, A. Big effects from small changes: possible ways to explore nature’s chemical diversity. ChemBioChem, 2002, 3(7), 619-627.
[http://dx.doi.org/10.1002/1439-7633(20020703)3:7<619::AID-CBIC619>3.0.CO;2-9]
[58]
Sureram, S.; Kesornpun, C.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. Directed biosynthesis through biohalogenation of secondary metabolites of the marine-derived fungus Aspergillus unguis. RSC Advances, 2013, 3, 1781-1788.
[http://dx.doi.org/10.1039/C2RA23021F]
[59]
Wang, P.; Yu, J.H.; Zhu, K.; Wang, Y.; Cheng, Z.Q.; Jiang, C.S.; Dai, J.G.; Wu, J.; Zhang, H. Phenolic bisabolane sesquiterpenoids from a Thai mangrove endophytic fungus, Aspergillus sp. xy02. Fitoterapia, 2018, 127, 322-327.
[http://dx.doi.org/10.1016/j.fitote.2018.02.031]
[60]
Oh, D.C.; Kauffman, C.A.; Jensen, P.R.; Fenical, W. Induced production of emericellamides A and B from the marine-derived fungus Emericella sp. in competing co-culture. J. Nat. Prod., 2007, 70(4), 515-520.
[http://dx.doi.org/10.1021/np060381f]
[61]
Nützmann, H.W.; Reyes-Dominguez, Y.; Scherlach, K.; Schroeckh, V.; Horn, F.; Gacek, A.; Schümann, J.; Hertweck, C.; Strauss, J.; Brakhage, A.A. Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation. Proc. Natl. Acad. Sci. USA, 2011, 108(34), 14282-14287.
[http://dx.doi.org/10.1073/pnas.1103523108]
[62]
Schroeckh, V.; Scherlach, K.; Nützmann, H.W.; Shelest, E.; Schmidt-Heck, W.; Schuemann, J.; Martin, K.; Hertweck, C.; Brakhage, A.A. Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc. Natl. Acad. Sci. USA, 2009, 106(34), 14558-14563.
[http://dx.doi.org/10.1073/pnas.0901870106]
[63]
Cueto, M.; Jensen, P.R.; Kauffman, C.; Fenical, W.; Lobkovsky, E.; Clardy, J. Pestalone, a new antibiotic produced by a marine fungus in response to bacterial challenge. J. Nat. Prod., 2001, 64(11), 1444-1446.
[http://dx.doi.org/10.1021/np0102713]
[64]
Oh, D.C.; Jensen, P.R.; Kauffman, C.A.; Fenical, W. Libertellenones A-D: Induction of cytotoxic diterpenoid biosynthesis by marine microbial competition. Bioorg. Med. Chem., 2005, 13(17), 5267-5273.
[http://dx.doi.org/10.1016/j.bmc.2005.05.068]
[65]
Zuck, K.M.; Shipley, S.; Newman, D.J. Induced production of N-formyl alkaloids from Aspergillus fumigatus by co-culture with Streptomyces peucetius. J. Nat. Prod., 2011, 74(7), 1653-1657.
[http://dx.doi.org/10.1021/np200255f]
[66]
Abdelwahab, M.F.; Kurtán, T.; Mándi, A.; Müller, W.E.; Fouad, M.A.; Kamel, M.S.; Liu, Z.; Ebrahim, W.; Daletos, G.; Proksch, P. Induced secondary metabolites from the endophytic fungus Aspergillus versicolor through bacterial co-culture and OSMAC approaches. Tetrahedron Lett., 2018, (59), 2647-2652.
[http://dx.doi.org/10.1016/j.tetlet.2018.05.067]
[67]
Vinale, F.; Nicoletti, R.; Borrelli, F.; Mangoni, A.; Parisi, O.A.; Marra, R.; Lombardi, N.; Lacatena, F.; Grauso, L.; Finizio, S.; Lorito, M.; Woo, S.L. Co-culture of plant beneficial microbes as source of bioactive metabolites. Sci. Rep., 2017, 7(1), 14330.
[http://dx.doi.org/10.1038/s41598-017-14569-5]
[68]
Bulger, M. Hyperacetylated chromatin domains: Lessons from heterochromatin. J. Biol. Chem., 2005, 280(23), 21689-21692.
[http://dx.doi.org/10.1074/jbc.R500004200]
[69]
Williams, R.B.; Henrikson, J.C.; Hoover, A.R.; Lee, A.E.; Cichewicz, R.H. Epigenetic remodeling of the fungal secondary metabolome. Org. Biomol. Chem., 2008, 6(11), 1895-1897.
[http://dx.doi.org/10.1039/b804701d]
[70]
Brakhage, A.A. Regulation of fungal secondary metabolism. Nat. Rev. Microbiol., 2013, 11(1), 21-32.
[http://dx.doi.org/10.1038/nrmicro2916]
[71]
Bok, J.W.; Keller, N.P. LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot. Cell, 2004, 3(2), 527-535.
[http://dx.doi.org/10.1128/EC.3.2.527-535.2004]
[72]
Brakhage, A.A.; Schroeckh, V. Fungal secondary metabolites - Strategies to activate silent gene clusters. Fungal Genet. Biol., 2011, 48(1), 15-22.
[http://dx.doi.org/10.1016/j.fgb.2010.04.004]
[73]
Strobel, G.A. Endophytes as sources of bioactive products. Microbes Infect., 2003, 5(6), 535-544.
[http://dx.doi.org/10.1016/S1286-4579(03)00073-X]
[74]
Borgonetti, V.; Governa, P.; Montopoli, M.; Biagi, M. Cannabis sativa L. constituents and their role in neuroinflammation. Curr. Bioact. Compd., 2019, 15, 147-158.
[http://dx.doi.org/10.2174/1573407214666180703130525]
[75]
Voytas, D.F.; Gao, C. Precision genome engineering and agriculture: Opportunities and regulatory challenges. PLoS Biol., 2014, 12(6), e1001877
[http://dx.doi.org/10.1371/journal.pbio.1001877]
[76]
El-Sayed, A.S.A.; Abdel-Ghany, S.E.; Ali, G.S. Genome editing approaches: Manipulating of lovastatin and taxol synthesis of filamentous fungi by CRISPR/Cas9 system. Appl. Microbiol. Biotechnol., 2017, 101(10), 3953-3976.
[http://dx.doi.org/10.1007/s00253-017-8263-z]