Prospect of RuIII(edta) in Catalysis of Bicarbonate Reduction

Page: [23 - 31] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Reduction of carbon dioxide into formic acid using transition metal complexes as catalysts is a research area of abiding importance. Although ruthenium(II) complexes as ‘molecular catalysts’ have received much attention, use of ruthenium(III) complexes in the selective reduction of carbon dioxide into formic acid has recently been explored. This review focuses on the recent research progress in the use of a ruthenium(III) complex containing the ‘edta’ ligand (edta4- = ethylenediaminetetraacetate) as catalyst or mediator in the catalytic, electro-catalytic and photocatalytic conversion of bicarbonate to formate selectively. Details of the reaction mechanism pertaining to the overall catalytic process are discussed.

Keywords: Ruthenium(III) complex, bicarbonate, reduction, catalysis, electro-catalysis, photo-catalysis, formate.

Graphical Abstract

[1]
Arakawa, H.; Aresta, M.; Armor, J.N.; Barteau, M.A.; Beckman, E.J.; Bell, A.T.; Bercaw, J.E.; Creutz, C.; Dinjus, E.; Dixon, D.A.; Domen, K.; DuBois, D.L.; Eckert, J.; Fujita, E.; Gibson, D.H.; Goddard, W.A.; Goodman, D.W.; Keller, J.; Kubas, G.J.; Kung, H.H.; Lyons, J.E.; Manzer, L.E.; Marks, T.J.; Morokuma, K.; Nicholas, K.M.; Periana, R.; Que, L.; Rostrup-Nielson, J.; Sachtler, W.M.H.; Schmidt, L.D.; Sen, A.; Somorjai, G.A.; Stair, P.C.; Stults, B.R.; Tumas, W. Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chem. Rev., 2001, 101(4), 953-996.
[http://dx.doi.org/10.1021/cr000018s] [PMID: 11709862]
[2]
Song, C. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal. Today, 2006, 115, 2-32.
[http://dx.doi.org/10.1016/j.cattod.2006.02.029]
[3]
Sakakura, T.; Choi, J-C.; Yasuda, H. Transformation of carbon dioxide. Chem. Rev., 2007, 107(6), 2365-2387.
[http://dx.doi.org/10.1021/cr068357u] [PMID: 17564481]
[4]
Mikkelsen, M.; Jorgensen, M.; Krebs, F.C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci., 2010, 3, 43-81.
[http://dx.doi.org/10.1039/B912904A]
[5]
Wang, W.; Wang, S.; Ma, X.; Gong, J. Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev., 2011, 40(7), 3703-3727.
[http://dx.doi.org/10.1039/c1cs15008a] [PMID: 21505692]
[6]
Savéant, J-M. Molecular catalysis of electrochemical reactions. Mechanistic aspects. Chem. Rev., 2008, 108(7), 2348-2378.
[http://dx.doi.org/10.1021/cr068079z] [PMID: 18620367]
[7]
Spinner, N.S.; Vega, J.A.; Mustain, W.E. Recent progress in electrochemical conversion and utilization of CO2. Catal. Sci. Technol., 2012, 2, 19-28.
[http://dx.doi.org/10.1039/C1CY00314C]
[8]
Yamazaki, Y.; Takeda, H.; Ishitani, O. Photocatalytic reduction of CO2 using metal complexes. J. Photochem. Photobiol. Photochem. Rev., 2015, 25, 106-137.
[http://dx.doi.org/10.1016/j.jphotochemrev.2015.09.001]
[9]
Windle, C.D.; Peruz, R.N. Advances in molecular photocatalytic and electrocatalytic CO2 reduction. Coord. Chem. Rev., 2012, 256, 2562-2570.
[http://dx.doi.org/10.1016/j.ccr.2012.03.010]
[10]
Zhao, G.; Huang, X.; Wang, X.; Wang, X. Progress in catalyst exploration for heterogeneous CO2 reduction and utilization: a critical review. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5, 21625-21649.
[http://dx.doi.org/10.1039/C7TA07290B]
[11]
Schneider, J.; Jia, H.; Muckerman, J.T.; Fujita, E. Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts. Chem. Soc. Rev., 2012, 41(6), 2036-2051.
[http://dx.doi.org/10.1039/C1CS15278E] [PMID: 22167246]
[12]
Appel, A.M.; Bercaw, J.E.; Bocarsly, A.B.; Dobbek, H.; DuBois, D.L.; Dupuis, M.; Ferry, J.G.; Fujita, E.; Hille, R.; Kenis, P.J.A.; Kerfeld, C.A.; Morris, R.H.; Peden, C.H.F.; Portis, A.R.; Ragsdale, S.W.; Rauchfuss, T.B.; Reek, J.N.H.; Seefeldt, L.C.; Thauer, R.K.; Waldrop, G.L. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem. Rev., 2013, 113(8), 6621-6658.
[http://dx.doi.org/10.1021/cr300463y] [PMID: 23767781]
[13]
DuBois, D.L. Development of molecular electrocatalysts for energy storage. Inorg. Chem., 2014, 53(8), 3935-3960.
[http://dx.doi.org/10.1021/ic4026969] [PMID: 24555579]
[14]
Kuramochi, Y.; Ishitani, O.; Ishida, H. Reaction mechanisms of catalytic photochemical CO2 reduction using Re(I) and Ru(II) complexes. Coord. Chem. Rev., 2018, 373, 333-356.
[http://dx.doi.org/10.1016/j.ccr.2017.11.023]
[15]
Matsubara, T.; Creutz, C. Properties and reactivities of ethylenediamineteraacetate complexes of ruthenium(III) and –(II). Inorg. Chem., 1979, 18, 1956-1966.
[http://dx.doi.org/10.1021/ic50197a047]
[16]
Bajaj, H.C. van Eldik, Kinetics and mechanism of ligand substitution reactions of ethylenediaminetetraacetate of ruthenium(III) in aqueous solution. Inorg. Chem., 1988, 27, 4052-4055.
[http://dx.doi.org/10.1021/ic00295a031]
[17]
Taqui Khan, M.M.; Chatterjee, D.; Merchant, R.R.; Paul, P.; Abdi, S.H.R.; Srinivas, D.; Siddiqui, M.R.H.; Moiz, M.A.; Bhadbhade, M.M.; Venkatasubramanian, K. Syntheses of monooxoruthenium(V) complexes containing the aminopolycarboxylic ligands EDTA and PDTA their reactvities in the oxidation of organic substrates: X-ray crystal structure of K[RuIII(edta-H)Cl2H2O and K[RuIII(pdta-H)Cl0.5H2O. Inorg. Chem., 1992, 31, 2711-2718.
[http://dx.doi.org/10.1021/ic00039a010]
[18]
Chatterjee, D. Properties and reactivities of polyaminopolycarboxylate (pac) complexes of ruthenium. Coord. Chem. Rev., 1998, 168, 273-293.
[http://dx.doi.org/10.1016/S0010-8545(97)00072-6]
[19]
Chatterjee, D.; van Eldik, R. RuIII(edta) mediated activation of redox signaling molecules. Coord. Chem. Rev., 2017, 349, 129-138.
[http://dx.doi.org/10.1016/j.ccr.2017.08.024]
[20]
Ishida, H.; Tanaka, K.; Tanaka, T. The electrochemical reduction of carbon dioxide catalyzed by ruthenium carbonyl complexes. Chem. Lett., 1985, 14, 405-406.
[http://dx.doi.org/10.1246/cl.1985.405]
[21]
Ishida, H.; Tanaka, H.; Tanaka, K.; Tanaka, T. Selective formation of formate in the electrochemical carbon dioxide reduction catalyzed by [Ru(bpy)2(CO)2]2+ (bpy = 2,2′-bipyri-dine). Chem. Commun., 1987, 131-132.
[http://dx.doi.org/10.1039/C39870000131]
[22]
Ishida, H.; Tanaka, K.; Tanaka, T. Electrochemical CO2 reduction catalyzed by ruthenium complexes [Ru(bpy)2(CO)2]2+ and [Ru(bpy)2(CO)Cl]+. Effect of pH on the formation of CO and HCOO. Organometallics, 1987, 6, 181-186.
[http://dx.doi.org/10.1021/om00144a033]
[23]
Ishida, H.; Fujiki, K.; Ohba, T.; Ohkubo, K.; Tanaka, K.; Terada, T.; Tanaka, T. Ligand effects of ruthenium 2,2′-bipyridine and 1,10-phenanthroline complexes on the electrochemical reduction of carbon dioxide. Dalton Trans., 1990, 2155-2160.
[http://dx.doi.org/10.1039/DT9900002155]
[24]
Chardon-Noblat, S.; Deronzier, A.; Ziessel, R.; Zsoldos, D. Selective synthesis and electrochemical behavior of trans(Cl)- and cis(Cl)-[Ru(bpy)(CO)2Cl2] complexes (bpy = 2,2′-Bipyridine). Comparative studies of their electrocatalytic activity toward the reduction of carbon dioxide. Inorg. Chem., 1997, 36, 5384-5389.
[http://dx.doi.org/10.1021/ic9701975]
[25]
Tanaka, K.; Ooyama, D. Multi-electron reduction of CO2 via Ru-CO2, -C(O)OH, -CO, -CHO and –CH2OH species. Coord. Chem. Rev., 2002, 226, 211-218.
[http://dx.doi.org/10.1016/S0010-8545(01)00434-9]
[26]
White, T.A.; Maji, S.; Ott, S. Mechanistic insights into electrocatalytic CO2 reduction within [Ru(II)(tpy)(NN)X]n+ architectures. Dalton Trans., 2014, 43(40), 15028-15037.
[http://dx.doi.org/10.1039/C4DT01591F] [PMID: 25072294]
[27]
Machan, C.W.; Sampson, M.D.; Kubiak, C.P. A molecular ruthenium electrocatalyst for the reduction of carbon dioxide to CO and Formate. J. Am. Chem. Soc., 2015, 137(26), 8564-8571.
[http://dx.doi.org/10.1021/jacs.5b03913] [PMID: 26087401]
[28]
Chardon-Noblat, S.; Deronzier, A.; Ziessel, R.; Zsoldos, D. Electroreduction of CO2 catalyzed by polymeric [Ru(bpy)(CO)2]n films in aqueous media: Parameters influencing the reaction selectivity. J. Electroanal. Chem. (Lausanne Switz.), 1998, 444, 253-260.
[http://dx.doi.org/10.1016/S0022-0728(97)00584-6]
[29]
Collomb-Dunand-Sauthier, M.N.; Deronzier, A.; Ziessel, R. Electrocatalytic reduction of carbon dioxide with mono(bipyridine)carbonylruthenium complexes in solution or as polymeric thin films. Inorg. Chem., 1994, 33, 2961-2967.
[http://dx.doi.org/10.1021/ic00091a040]
[30]
Collomb-Dunand-Sauthier, M.N.; Deronzier, A.; Ziessel, R. Electrocatalytic reduction of CO2 in water on a polymeric [Ru0(bpy)(CO)2n] (bpy = 2,2′-bipyridine) complex immobilized on carbon electrodes. Dalton Trans., 1994, 2, 189-191.
[31]
Chardon-Noblat, S.; Collomb-Dunand-Sauthier, M.N.; Deronzier, A.; Ziessel, R.; Zsoldos, D. Formation of polymeric [Ru0(bpy)(CO)2n] films by electrochemical reduction of [Ru(bpy)2(CO)2](PF6)2: Its implication in CO2 electrocatalytic reduction. Inorg. Chem., 1994, 33, 4410-4412.
[http://dx.doi.org/10.1021/ic00097a034]
[32]
Chatterjee, D.; Jaiswal, N.; Banerjee, P. Electrochemical conversion of bicarbonate to formate mediated by the complex RuIII(edta) (edta4- = ethylenediaminetetraacetate). Eur. J. Inorg. Chem., 2014, 2014(34), 5856-5859.
[http://dx.doi.org/10.1002/ejic.201402831]
[33]
Wang., W-H; Himida, Y. Recent advances in transition metal catalyzed homogeneous hydrogenation of carbon dioxide in aqueous mediaM INTECH, 2012, 249-268.
[http://dx.doi.org/10.5772/48658]
[34]
Fellay, C.; Dyson, P.J.; Laurenczy, G. A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst. Angew. Chem. Int. Ed. Engl., 2008, 47(21), 3966-3968.
[http://dx.doi.org/10.1002/anie.200800320] [PMID: 18393267]
[35]
Joó, F. Breakthroughs in hydrogen storage--formic Acid as a sustainable storage material for hydrogen. ChemSusChem, 2008, 1(10), 805-808.
[http://dx.doi.org/10.1002/cssc.200800133] [PMID: 18781551]
[36]
Enthaler, S.; von Langermann, J.; Schmidt, T. Carbondioxide and formic acid – the couple for environmental-friendly hydrogen storage? Energy Environ. Sci., 2010, 3, 1207-1217.
[http://dx.doi.org/10.1039/b907569k]
[37]
Papp, G.; Csorba, J.; Laurenczy, G.; Joó, F.; Joo, F. A charge/discharge device for chemical hydrogen storage and generation. Angew. Chem. Int. Ed. Engl., 2011, 50(44), 10433-10435.
[http://dx.doi.org/10.1002/anie.201104951] [PMID: 21919172]
[38]
Grasemann, M.; Laurenczy, G. Formic acid as a hydrogen source – recent developments and future trends. Energy Environ. Sci., 2012, 5, 8171-8181.
[http://dx.doi.org/10.1039/c2ee21928j]
[39]
Gan, W.; Snelder, D.G.M.; Dyson, P.J.; Laurenczy, G. Ruthenium(II)-catalyzed hydrogen generation from formic acid using cationic ammoniomethyl-substituted triarylphosphine ligands. ChemCatChem, 2013, 5, 1126-1132.
[http://dx.doi.org/10.1002/cctc.201200782]
[40]
Singh, A.K.; Singh, S.; Kumar, A. Hydrogen energy future with formic acid: A renewable chemical hydrogen storage system. Catal. Sci. Technol., 2016, 6, 12-40.
[http://dx.doi.org/10.1039/C5CY01276G]
[41]
Muller, K.; Brooks, K.; Autrey, T. Hydrogen storage in formic acid: A comparison of process options. Energy Fuels, 2017, 31, 12603-12611.
[http://dx.doi.org/10.1021/acs.energyfuels.7b02997]
[42]
Joó, F.; Laurenczy, G.; Nádasdi, L.; Elek, J. Homogeneous hydrogenation of aqueous hydrogen carbonate to formate under exceedingly mild conditions - a novel possibility of carbon dioxide activation. Chem. Commun. (Camb.), 1999, 971-972.
[http://dx.doi.org/10.1039/a902368b]
[43]
Laurenczy, G.; Joó, F.; Nádasdi, L. Formation and characterization of water-soluble hydrido-ruthenium(II) complexes of 1,3,5-triaza-7-phosphaadamantane and their catalytic activity in hydrogenation of CO2 and HCO3- in aqueous solution. Inorg. Chem., 2000, 39(22), 5083-5088.
[http://dx.doi.org/10.1021/ic000200b] [PMID: 11233205]
[44]
Munshi, P.; Main, A.D.; Linehan, J.C.; Tai, C.C.; Jessop, P.G. Hydrogenation of carbon dioxide catalyzed by ruthenium trimethylphosphine complexes: the accelerating effect of certain alcohols and amines. J. Am. Chem. Soc., 2002, 124(27), 7963-7971.
[http://dx.doi.org/10.1021/ja0167856] [PMID: 12095340]
[45]
Elek, J.; Nádasdi, L.; Papp, G.; Laurenczy, G.; Joó, F. Homogeneous hydrogenation of carbon dioxide and bicarbonate in aqueous solution catalysed by water soluble ruthenium(II)-phosphine complexes. Appl. Catal. A Gen., 2003, 255, 59-67.
[http://dx.doi.org/10.1016/S0926-860X(03)00644-6]
[46]
Himeda, Y.; Onozawa-Komatsuzaki, N.; Sugihara, H.; Arakawa, H.; Kasuga, K. Half-Sandwich Complexes with 4,7-Dihydroxy-1,10-phenanthroline: Water-Soluble, Highly Efficient Catalysts for Hydrogenation of Bicarbonate Attributable to the Generation of an Oxyanion on the Catalyst Ligand. Organometallics, 2004, 23, 1480-1483.
[http://dx.doi.org/10.1021/om030382s]
[47]
Hayashi, H.; Ogo, S.; Fukuzumi, S. Aqueous hydrogenation of carbon dioxide catalysed by water-soluble ruthenium aqua complexes under acidic conditions. Chem. Commun. (Camb.), 2004, (23), 2714-2715.
[http://dx.doi.org/10.1039/b411633j] [PMID: 15568081]
[48]
Urakawa, A.; Jutz, F.; Laurenczy, G.; Baiker, A. Carbon dioxide hydrogenation catalyzed by a ruthenium dihydride: a DFT and high-pressure spectroscopic investigation. Chemistry, 2007, 13(14), 3886-3899.
[http://dx.doi.org/10.1002/chem.200601339] [PMID: 17294492]
[49]
Federsel, C.; Jackstell, R.; Boddien, A.; Laurenczy, G.; Beller, M. Ruthenium-catalyzed hydrogenation of bicarbonate in water. ChemSusChem, 2010, 3(9), 1048-1050.
[http://dx.doi.org/10.1002/cssc.201000151] [PMID: 20635380]
[50]
Moret, S.; Dyson, P.J.; Laurenczy, G. Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media. Nat. Commun., 2014, 5, 4017-4024.
[http://dx.doi.org/10.1038/ncomms5017] [PMID: 24886955]
[51]
Wesselbaum, S.; Moha, V.; Meuresch, M.; Brosinski, S.; Thenert, K.M.; Kothe, J.; Stein, T.V.; Englert, U.; Hölscher, M.; Klankermayer, J.; Leitner, W. Hydrogenation of carbon dioxide to methanol using a homogeneous ruthenium-Triphos catalyst: from mechanistic investigations to multiphase catalysis. Chem. Sci. (Camb.), 2015, 6(1), 693-704.
[http://dx.doi.org/10.1039/C4SC02087A] [PMID: 30154993]
[52]
Chatterjee, D.; Sarkar, P. RuIII(edta) catalyzed hydrogenation of bicarbonate to formate. J. Coord. Chem., 2016, 69, 650-655.
[http://dx.doi.org/10.1080/00958972.2015.1125476]
[53]
Clapham, S.E.; Hadzovic, A.; Morris, R.H. Mechanism of the H2-hydrogenation and transfer hydrogenation of polar bonds catalyzed ruthenium(II)-hydride complexes. Coord. Chem. Rev., 2004, 248, 2201-2237.
[http://dx.doi.org/10.1016/j.ccr.2004.04.007]
[54]
Izumi, Y. Recent advances in photocatalytic conversion of carbon dioxide into fuel with water and/or hydrogen using solar energy and beyond. Coord. Chem. Rev., 2013, 257, 171-186.
[http://dx.doi.org/10.1016/j.ccr.2012.04.018]
[55]
Ma, Y.; Wang, X.; Jia, Y.; Chen, X.; Han, H.; Li, C. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev., 2014, 114(19), 9987-10043.
[http://dx.doi.org/10.1021/cr500008u] [PMID: 25098384]
[56]
Mele, G.; Annese, C.; D’Accolti, L.; De Riccardis, A.; Fusco, C.; Palmisano, L.; Scarlino, A.; Vasapollo, G. Photoreduction of carbon dioxide to formic acid in aqueous suspension: a comparison between phthalocyanine/TiO2 and porphyrin/TiO2 catalysed processes. Molecules, 2014, 20(1), 396-415.
[http://dx.doi.org/10.3390/molecules20010396] [PMID: 25558853]
[57]
Ishida, H.; Tanaka, K.; Tanaka, T. Photoreduction of carbon dioxide in the [Ru(bpy)2(CO)2]2+ (bpy = 2,2′-bipyridine)/[Ru(bpy)3]2+ or [Ru(phen)3]2+ (phen = phenanthroline)/triethanol-amine/N,N-dimethylformamide system. Chem. Lett., 1987, 16, 1035-1038.
[http://dx.doi.org/10.1246/cl.1987.1035]
[58]
Ishida, H.; Tanaka, K.; Tanaka, T. Photochemical carbon dioxide reduction by an NADH model compound in the presence of ruthenium complexes [Ru(bpy)3]2+ and [Ru(bpy)2(CO)2]2+ (bpy = 2,2′-bipyridine) in water/DMF. Chem. Lett., 1988, 17, 339-342.
[http://dx.doi.org/10.1246/cl.1988.339]
[59]
Lehn, J.M.; Ziessel, R. Photochemical reduction of carbon dioxide to formate catalyzed by (2,2′-bipyridine)- or (1,10-phenanthroline)ruthenium(II) complexes. J. Organomet. Chem., 1990, 382, 157-173.
[http://dx.doi.org/10.1016/0022-328X(90)85224-M]
[60]
Ishida, H.; Tanaka, T.; Tanaka, K.; Tanaka, T. Photochemical carbon dioxide reduction catalyzed by bis(2,2′-bipyridine)dicarbonylruthenium(2+) using triethanolamine and 1-ben-zyl-1,4-dihydronicotinamide as an electron donor. Inorg. Chem., 1990, 29, 905-911.
[http://dx.doi.org/10.1021/ic00330a004]
[61]
Tamaki, Y.; Morimoto, T.; Koike, K.; Ishitani, O. Photocatalytic CO2 reduction with high turnover frequency and selectivity of formic acid formation using Ru(II) multinuclear complexes. Proc. Natl. Acad. Sci. USA, 2012, 109(39), 15673-15678.
[http://dx.doi.org/10.1073/pnas.1118336109] [PMID: 22908243]
[62]
Kuramochi, Y.; Kamiya, M.; Ishida, H. Photocatalytic CO2 reduction in N,N-dimethylacetamide/water as an alternative solvent system. Inorg. Chem., 2014, 53(7), 3326-3332.
[http://dx.doi.org/10.1021/ic500050q] [PMID: 24628681]
[63]
Kuramochi, Y.; Itabashi, J.; Fukaya, K.; Enomoto, A.; Yoshida, M.; Ishida, H. Unexpected effect of catalyst concentration on photochemical CO2 reduction by trans(Cl)-Ru(bpy)(CO)2Cl2: new mechanistic insight into the CO/HCOO- selectivity. Chem. Sci. (Camb.), 2015, 6(5), 3063-3074.
[http://dx.doi.org/10.1039/C5SC00199D] [PMID: 28706681]
[64]
Kuramochi, Y.; Fukaya, K.; Yoshida, M.; Ishida, H. (Cl)-[Ru(5,5′-diamide-2,2′bipyridine)(CO)2Cl2]: Synthesis, structure, and photocatalytic CO2 reduction activity. Chemistry, 2015, 21(28), 10049-10060.
[http://dx.doi.org/10.1002/chem.201500782] [PMID: 26014896]
[65]
Ishida, H.; Sakaba, A. Temperature dependence of photocatalytic CO2 reduction by trans(Cl)-Ru(bpy)(CO)2Cl2: Activation energy difference between CO and formate production. Faraday Discuss., 2017, 198, 263-277.
[http://dx.doi.org/10.1039/C6FD00242K] [PMID: 28294231]
[66]
Kuramochi, Y.; Itabashi, J.; Toyama, M.; Ishida, H. Photochemical CO2 reduction catalyzed by trans(Cl)-Ru(2,2′-bipyridine)(CO)2Cl2 bearing two methyl groups at 4,4′-, 5,5′- or 6,6′-positions in the ligand. ChemPhotoChem., 2018, 2, 314-322.
[http://dx.doi.org/10.1002/cptc.201700201]
[67]
Yamanaka, K-I.; Sato, S.; Iwaki, M.; Kajino, T.; Morikawa, T. Photoinduced electron transfer from nitrogen-doped tantalum oxide to adsorbed ruthenium complex. J. Phys. Chem. C, 2011, 115, 18348-18353.
[http://dx.doi.org/10.1021/jp205223k]
[68]
Wang, C.; Ma, X-X.; Li, J.; Xu, L.; Zhang, F-X. Reduction of CO2 aqueous solution by using photosensitized-TiO2 nanotube catalysts modified by supramolecular metalloporphyrins-ruthenium(II) polypyridyl complexes. J. Mol. Catal. Chem., 2012, 363, 108-114.
[http://dx.doi.org/10.1016/j.molcata.2012.05.023]
[69]
Maeda, K.; Sekizawa, K.; Ishitani, O. A polymeric-semiconductor-metal-complex hybrid photocatalyst for visible-light CO(2) reduction. Chem. Commun. (Camb.), 2013, 49(86), 10127-10129.
[http://dx.doi.org/10.1039/c3cc45532g] [PMID: 24048317]
[70]
Yoshitomi, F.; Sekizawa, K.; Maeda, K.; Ishitani, O. Selective formic acid production via CO2 reduction with visible light using a hybrid of a perovskite tantalum oxynitride and a binuclear ruthenium(II) complex. ACS Appl. Mater. Interfaces, 2015, 7(23), 13092-13097.
[http://dx.doi.org/10.1021/acsami.5b03509] [PMID: 26024470]
[71]
Nie, Y.Y.; Wang, C.; Li, J.; Ma, X-X. Ru(II) Polypyridyl Complexes-Sensitized TiO2 nanotubes for photoreduction of CO2 Aqueous Solution. Nano, 2016, 11, 1650134
[http://dx.doi.org/10.1142/S1793292016501344]
[72]
Kuriki, R.; Ishitani, O.; Maeda, K. Unique solvent effects on visible-light CO2 reduction over ruthenium(II)-complex/carbon nitride hybrid photocatalysts. ACS Appl. Mater. Interfaces, 2016, 8(9), 6011-6018.
[http://dx.doi.org/10.1021/acsami.5b11836] [PMID: 26891142]
[73]
Nakada, A.; Nakashima, T.; Sekizawa, K.; Maeda, K.; Ishitani, O. Visible-light-driven CO2 reduction on a hybrid photocatalyst consisting of a Ru(ii) binuclear complex and a Ag-loaded TaON in aqueous solutions. Chem. Sci. (Camb.), 2016, 7(7), 4364-4371.
[http://dx.doi.org/10.1039/C6SC00586A] [PMID: 30155083]
[74]
Kuramochi, Y.; Sekine, M.; Kitamura, K.; Maegawa, Y.; Goto, Y.; Shirai, S.; Inagaki, S.; Ishida, H. Ishida. H. Photocatalytic CO2 reduction by periodic mesoporous organosilica (PMO) containing two diferent ruthenium complexes as photosensitizing and catalytic sites. Chemistry, 2017, 23(43), 10301-10309.
[http://dx.doi.org/10.1002/chem.201701466] [PMID: 28467639]
[75]
Sekizawa, K.; Sato, S.; Arai, T.; Morikawa, T. Solar-driven photocatalytic CO2 reduction in water utilizing a ruthenium complex catalyst on p-type Fe2O3 with a multi-heterojunction. ACS Catal., 2018, 8, 1405-1416.
[http://dx.doi.org/10.1021/acscatal.7b03244]
[76]
Mondal, T.; Chatterjee, D. RuIII-edta (edta4- = ethylenediaminetetraacetate) mediated photocatalytic conversion of bicarbonate to formate over visible light irradiated non-metal doped TiO2 semiconductor photocatalyst. RSC Advances, 2016, 6, 63488-63493.
[http://dx.doi.org/10.1039/C6RA11464D]
[77]
Pugh, J.R.; Bruce, M.R.M.; Sullivan, B.P.; Meyer, T.J. Formation of a metal-hydride bond and the insertion of carbon dioxide. Key steps in the electrocatalytic reduction of carbon dioxide to formate anion. Inorg. Chem., 1991, 30, 86-91.
[http://dx.doi.org/10.1021/ic00001a016]
[78]
Wang, Y.; He, D.; Chen, H.; Wang, D. Catalysts in electro-, photo- and photoelectrocatalytic CO2 reduction reactions. J. Photochem. Photobiol. C Photochem. Rev., 2019, 40, 117-149.
[http://dx.doi.org//10.1016/j.jphotochemrev.2019.02.002]